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ADIABATIC THEORY OF MOTION OF BODIES IN THE HARTLE-THORNE SPACETIME

Abstract: We study the motion of test particles in the gravitational field of a rotating and deformed 
object within the framework of the adiabatic theory. For this purpose, the Hartle-Thorne metric written in 
harmonic coordinates is employed in the post-Newtonian approximation where the adiabatic theory is 
valid. As a result, we obtain the perihelion shift formula for test particles orbiting on the equatorial plane 
of a rotating and deformed object. Based on the perihelion shift expression, we show that the principle of 
superposition is valid for the individual effects of the gravitational source mass, angular momentum and 
quadrupole moment. The resulting formula was applied to the inner planets of the Solar system. The 
outcomes are in a good agreement with observational data. It was also shown that the corrections related 
to the Sun's angular moment and quadrupole moment have little impact on the perihelion shift. On the 
whole, it was demonstrated that the adiabatic theory, along with its simplicity, leads to correct results, 
which in the limiting cases correspond to the ones reported in the literature.

Key words: adiabatic theory, the Hartle-Thorne metric, post-Newtonian approximation, harmonic 
coordinates, perihelion shift.

Introduction

In most cases, real astrophysical objects rotate 
and their shapes are different from a sphere.
Therefore, when one considers the motion of test 
particles in the gravitational field of real objects, it 
is necessary to account for the influence of both 
proper rotation and deformation of the source. A 
convenient way to consider the geometry of the 
source is to study its multipole moments of which 
the most important are the mass 𝑀𝑀𝑀𝑀, angular 
momentum 𝐽𝐽𝐽𝐽, and quadrupole moment 𝑄𝑄𝑄𝑄. The 
solution to the field equations for a static, 
spherically symmetric object in vacuum is well-
known in the literature as the Schwarzschild metric 
[1]. This solution describes new effects that could 
not be explained within the classical Newtonian 
theory of gravity [2, 3]. In 1918, Lense and Thirring 
derived an approximate external solution that takes 
into account the rotation of the source up to the first 
order in the angular momentum [4]. According to 

this work, rotation generates and additional 
gravitational field which leads to the dragging of 
inertial frames (known as the Lense-Thirring effect). 
In 1959, Erez and Rosen derived a solution for a 
static, axially symmetric object by including of a 
quadrupole parameter [5]. However, the first 
approximate solution that takes into account both 
angular momentum and quadrupole moment was 
found by Hartle and Thorne in 1968 [6, 7]. This 
solution allows us to investigate the external 
gravitational field of astrophysical objects, starting 
from massive main sequence stars up to neutron and 
quark stars [8]. It should be mentioned that there are 
several vacuum exact solutions to the Einstein field 
equation, which account for higher-order multipole 
moments with additional parameters such as electric 
charge, dilatonic charge, scalar fields, etc [9 – 12 ]. 
However, for simplicity, here we will focus on the 
approximate Hartle and Thorne solution and will 
study the motion of test bodies within the adiabatic 
theory.
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An interesting approach for studying the motion 
of test particles in general relativity was proposed 
by Abdildin [13, 14], by using the conceptual 
framework developed by Fock [15]. In Ref. [13], the 
Fock metric was generalized to consider the rotation 
of the source (up to the second order in the angular 
momentum) and its internal structure in the post-
Newtonian (~1/𝑐𝑐𝑐𝑐2) approximation, where 𝑐𝑐𝑐𝑐 is the 
speed of light in vacuum. This extended Fock metric 
was originally presented in harmonic coordinates, 
which facilitate the study of the motion of test 
particles by using the vectors associated to the 
trajectories. One of the most important 
consequences of Abdildin's works was the 
implementation of the adiabatic theory to study the 
motion of bodies in general relativity [14], which 
drastically simplifies the form of the equations of 
motion derived previously in [16, 17]. In this work, 
we will show this advantage explicitly for the 
motion of test particles in the gravitational field of a 
rotating deformed object.

The work is organized as follows. In Section 1, 
we introduce the basic concepts of the adiabatic 
theory. In Section 2, we present the external Hartle-
Thorne solution, which is then implemented in 
Section 3 within the framework of the adiabatic 
theory to obtain an expression for the perihelion 
shift. Then, in Section 4, we compute the shift for 
the inner planets of the Solar system. Finally, 
Section 5 contains the conclusions of our analysis.

Adiabatic theory

The application of adiabatic theory for the 
investigation of motion in general relativity, as 
proposed in [14]} for closed orbits, is based on the 
use of the vector elements of the orbits, asymptotic 
methods of the theory of nonlinear oscillations, and 
adiabatic invariants.

The main idea is that the motion can be 
described by a Lagrangian which is essentially the 
perturbation of a known Lagrangian. Consider, for 
instance, the Kepler problem for the motion of a 
relativistic particle in a central field. Then, 
corresponding perturbed Lagrangian function can be 
expressed as

𝐿𝐿𝐿𝐿 = −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 +
𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣2

2
+
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚0

𝑟𝑟𝑟𝑟
+ 𝐹𝐹𝐹𝐹(𝑟𝑟𝑟𝑟, �⃗�𝑣𝑣𝑣),       (1)

where 𝐹𝐹𝐹𝐹 is the perturbation function. Accordingly, 
the corresponding Hamilton function is written as

𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 −
𝑝𝑝𝑝𝑝2

2𝑚𝑚𝑚𝑚
−
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚0

𝑟𝑟𝑟𝑟
− 𝐹𝐹𝐹𝐹(𝑟𝑟𝑟𝑟, �⃗�𝑣𝑣𝑣), (2)

where �⃗�𝑝𝑝𝑝 = 𝜕𝜕𝜕𝜕𝐿𝐿𝐿𝐿/𝜕𝜕𝜕𝜕�⃗�𝑣𝑣𝑣 is the momentum of the test 
particle.

The motion of a test particle can be described by 
the orbital angular momentum vector 𝑀𝑀𝑀𝑀��⃗ and the 
Laplace-Runge-Lenz vector 𝐴𝐴𝐴𝐴, which are integrals 
of motion defined as:

𝑀𝑀𝑀𝑀��⃗ = [𝑟𝑟𝑟𝑟 × �⃗�𝑝𝑝𝑝],                         (3)

𝐴𝐴𝐴𝐴 = �
�⃗�𝑝𝑝𝑝
𝑚𝑚𝑚𝑚

× 𝑀𝑀𝑀𝑀��⃗ � −
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟

𝑟𝑟𝑟𝑟,𝐴𝐴𝐴𝐴 = 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,      (4)

where 𝐴𝐴𝐴𝐴 is the magnitude (absolute value) of the 
Laplace-Runge-Lenz vector, 𝑟𝑟𝑟𝑟 is the radius vector of 
the test particle, 𝐺𝐺𝐺𝐺 is the gravitational constant, 𝑚𝑚𝑚𝑚0
is the mass of a gravitational source (central object), 
𝑚𝑚𝑚𝑚 is the mass of the test particle, and 𝑚𝑚𝑚𝑚 is the orbit 
eccentricity. The vectors 𝑀𝑀𝑀𝑀��⃗ and 𝐴𝐴𝐴𝐴 characterize the 
shape and position of the orbit in space. Namely, the 
vector 𝑀𝑀𝑀𝑀��⃗ is directed perpendicularly to the orbit 
plane and the vector 𝐴𝐴𝐴𝐴 is directed towards the 
perihelion of the orbit. Thus, one can write the 
equations of motion in a general form as follows:

𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀��⃗
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀�����⃗ + �Ω���⃗ × 𝑀𝑀𝑀𝑀��⃗ �,                   (5)

𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴���⃗ + �Ω���⃗ × 𝐴𝐴𝐴𝐴�,                       (6)

where 𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀�����⃗ , 𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴���⃗ are the unit vectors directed along 𝑀𝑀𝑀𝑀��⃗
and 𝐴𝐴𝐴𝐴, respectively, and Ω���⃗ is the angular velocity of 
rotation of the ellipse “as a whole”, which is the 
sought function in this theory. The explicit form of 
Ω���⃗ depends on the considered physical system. In 
Ref. [13], it is shown that the angular velocity can 
be computed as

Ω���⃗ =
𝜕𝜕𝜕𝜕𝐻𝐻𝐻𝐻�

𝜕𝜕𝜕𝜕𝑀𝑀𝑀𝑀��⃗
,                                  (7)

where 𝐻𝐻𝐻𝐻� is the Hamiltonian averaged over the 
period of the test particle's Keplerian orbit. The 
averaged Hamiltonian depends on the orbital 
angular momentum 𝑀𝑀𝑀𝑀��⃗ and the adiabatic invariant 
𝑀𝑀𝑀𝑀0 of the system
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𝑀𝑀𝑀𝑀0 =
𝑀𝑀𝑀𝑀

�1 − 𝐴𝐴𝐴𝐴2
𝛼𝛼𝛼𝛼2

.                             (8)

where 𝛼𝛼𝛼𝛼 = 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚.
The knowledge of the angular velocity Ω���⃗ allows 

us to investigate many relativistic effects without 
solving Eqs. (5) and (6) explicitly. The invariant (8) 
allows to write Eqs. (5) and (6) in a more compact 
form as

𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀��⃗
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀�����⃗ + �Ω���⃗ × 𝑀𝑀𝑀𝑀��⃗ �,                   (9)

𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴���⃗
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= �Ω���⃗ × 𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴���⃗ �,                      (10)

Thus, in the adiabatic theory, Eqs. (9) and (10) 
and the expression (7) are the mathematical basis for 

the investigation of the motion of bodies. In other 
words, these equations completely solve the 
problem of evolution in the quasi-Kepler problem.

In Fig. 1, we show the position of the vector 
elements and the proper angular momentum of the 
central object 𝐽𝐽𝐽𝐽, which is directed along the 𝑧𝑧𝑧𝑧 axis. 
Note that when 𝜃𝜃𝜃𝜃 = 𝜋𝜋𝜋𝜋/2 the directions of 𝑀𝑀𝑀𝑀��⃗ and 𝐽𝐽𝐽𝐽
coincide with the 𝑧𝑧𝑧𝑧 axis.

Hartle-Thorne metric

The Hartle-Thorne metric is an approximate 
vacuum solution of the Einstein field equations. It 
describes well enough the gravitational field of 
rotating deformed astrophysical objects and, 
therefore, it is chosen as an example in this work. Its 
general form (in geometric units 𝐺𝐺𝐺𝐺 = 𝑐𝑐𝑐𝑐 = 1) in 
spherical coordinates (𝑑𝑑𝑑𝑑,𝑅𝑅𝑅𝑅,Θ,𝜑𝜑𝜑𝜑) is given by

Figure 1 – Schematic illustration of a central object and a test particle 
with its vector elements, where 𝜃𝜃𝜃𝜃 is the polar angle between 

the 𝑧𝑧𝑧𝑧 axis and the radius vector 𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = −�1 −
2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
� �1 + 2𝑘𝑘𝑘𝑘1𝑃𝑃𝑃𝑃2(cosΘ) − 2 �1 −

2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
�
−1 𝐽𝐽𝐽𝐽2

𝑅𝑅𝑅𝑅4
(2 cos2Θ− 1)� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 +

+ �1 −
2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
�
−1
�1 − 2�𝑘𝑘𝑘𝑘1 −

6𝐽𝐽𝐽𝐽2

𝑅𝑅𝑅𝑅4
�𝑃𝑃𝑃𝑃2(cosΘ) − 2 �1 −

2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
�
−1 𝐽𝐽𝐽𝐽2

𝑅𝑅𝑅𝑅4
� 𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅2 +

+𝑅𝑅𝑅𝑅2[1 − 2𝑘𝑘𝑘𝑘2𝑃𝑃𝑃𝑃2(cosΘ)]�𝑑𝑑𝑑𝑑Θ2 + sin2Θ  𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2� −
4𝐽𝐽𝐽𝐽
𝑅𝑅𝑅𝑅

sin2Θ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑,                             (11)
where

𝑘𝑘𝑘𝑘1 =
𝐽𝐽𝐽𝐽2

𝑚𝑚𝑚𝑚0𝑅𝑅𝑅𝑅3
�1 +

𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
� +

5
8
𝑄𝑄𝑄𝑄 − 𝐽𝐽𝐽𝐽2/𝑚𝑚𝑚𝑚0

𝑚𝑚𝑚𝑚0
3 𝑄𝑄𝑄𝑄22(𝑥𝑥𝑥𝑥),                                              (12)
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𝑘𝑘𝑘𝑘2 = 𝑘𝑘𝑘𝑘1 +
𝐽𝐽𝐽𝐽2

𝑅𝑅𝑅𝑅4
+

5
4
𝑄𝑄𝑄𝑄 − 𝐽𝐽𝐽𝐽2/𝑚𝑚𝑚𝑚0

𝑚𝑚𝑚𝑚0
2𝑅𝑅𝑅𝑅

�1 −
2𝑚𝑚𝑚𝑚0

𝑅𝑅𝑅𝑅
�
−1/2

𝑄𝑄𝑄𝑄21(𝑥𝑥𝑥𝑥)                                       (13)

are functions of the 𝑅𝑅𝑅𝑅 coordinate, and

𝑄𝑄𝑄𝑄21(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥2 − 1)1/2 �
3𝑥𝑥𝑥𝑥
2

ln �
𝑥𝑥𝑥𝑥 + 1
𝑥𝑥𝑥𝑥 − 1

� −
3𝑥𝑥𝑥𝑥2 − 2
𝑥𝑥𝑥𝑥2 − 1

�,

𝑄𝑄𝑄𝑄22(𝑥𝑥𝑥𝑥) = (𝑥𝑥𝑥𝑥2 − 1) �
3
2

ln �
𝑥𝑥𝑥𝑥 + 1
𝑥𝑥𝑥𝑥 − 1

� −
3𝑥𝑥𝑥𝑥3 − 5𝑥𝑥𝑥𝑥
(𝑥𝑥𝑥𝑥2 − 1)2�                                                  (14)

are the associated Legendre functions of the second 
kind [18, 19], 𝑃𝑃𝑃𝑃2(cosΘ) is the Legendre 
polynomial, and 𝑥𝑥𝑥𝑥 = 𝑅𝑅𝑅𝑅/𝑚𝑚𝑚𝑚0 − 1. This metric is 
characterized by three parameters: the source mass 
𝑚𝑚𝑚𝑚0, angular momentum 𝐽𝐽𝐽𝐽 (up to the second order), 
and quadrupole moment 𝑄𝑄𝑄𝑄 (up to the first order).

The Hartle-Thorne metric describes the 
gravitational field of slowly rotating and slightly 
deformed astrophysical objects [20]. The metric [11] 
can be reduced by appropriate coordinate 
transformations to the Fock metric [21], to the Kerr 
metric [22], and to the Erez-Rosen metric [23, 24] in the 
corresponding limiting cases. For the purpose of this 
work, the metric [11] must be written in harmonic 
coordinates and expanded in a series of powers of 1/𝑐𝑐𝑐𝑐2.

Harmonic coordinates are important for many 
problems in general relativity [15]. Such coordinates 
are associated with the conditions under which 
spacetime is considered homogeneous and isotropic 
at large distances from the gravitational field source.
In turn, a consequence of the homogeneity and 

isotropy of the spacetime is the conservation of 
energy, momentum and angular momentum, which 
are in fact first integrals of the motion equations. In 
general, harmonic coordinates can be used in the 
study of gravitational fields generated by ordinary 
stars [25], black holes [26], as well as in the study of 
quantum gravity [27], supergravity [28], and in 
numerical relativity [29].

It should be emphasized that the geodesics in the 
Hartle-Thorne spacetime have been studied in the 
literature both analytically and numerically [30 –
32]. Here, unlike in the literature, we employ an 
alternative method to derive the perihelion shift 
formula in post-Newtonian physics.

Method

As already mentioned, in the present work we
need the Hartle-Thorne metric expanded in powers 
of 1/𝑐𝑐𝑐𝑐2. In harmonic coordinates it is written as 
follows [21, 33]:

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠2 = �1 −
2𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0

𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟
+

2𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos𝜃𝜃𝜃𝜃) +
2𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0

2

𝑐𝑐𝑐𝑐4𝑟𝑟𝑟𝑟2
−

4𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐4𝑟𝑟𝑟𝑟4

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃)� 𝑐𝑐𝑐𝑐2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 −

− �1 +
2𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0

𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟
−

2𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃)� [𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2 + 𝑟𝑟𝑟𝑟2(𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + sin2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2)] +
4𝐺𝐺𝐺𝐺𝐽𝐽𝐽𝐽
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟

sin2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑,            (15)

This representation allows us to explicitly 
identify relativistic corrections. Thus, in the 𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
component of the metric tensor, the first three terms 
refer to the Newtonian theory and the last two terms 
to the relativistic theory because of the multiplier 𝑐𝑐𝑐𝑐2

outside the parenthesis. Moreover, terms 
proportional to 1/𝑐𝑐𝑐𝑐2 also appear in the spatial part 
of the metric.

Now, directly from the metric (15) one finds the 
Lagrange function of the test particle

𝐿𝐿𝐿𝐿 = −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 +
𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣2

2
+
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟

−
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑄𝑄𝑄𝑄
𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) +
𝑚𝑚𝑚𝑚

2𝑐𝑐𝑐𝑐2
�
𝑣𝑣𝑣𝑣4

4
+

3𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑣𝑣𝑣𝑣2

𝑟𝑟𝑟𝑟
−
𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0

2

𝑟𝑟𝑟𝑟2
� +

 +
𝑚𝑚𝑚𝑚

2𝑐𝑐𝑐𝑐2
�−

3𝐺𝐺𝐺𝐺𝑣𝑣𝑣𝑣2𝑄𝑄𝑄𝑄
𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) +
2𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0𝑄𝑄𝑄𝑄

𝑟𝑟𝑟𝑟4
𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) −

4𝐺𝐺𝐺𝐺��⃗�𝑣𝑣𝑣 ∙ �𝑟𝑟𝑟𝑟 × 𝐽𝐽𝐽𝐽��
𝑟𝑟𝑟𝑟3

� ,                        (16)
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and besides

�⃗�𝑣𝑣𝑣 =
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

, 𝑣𝑣𝑣𝑣2 =
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟2 + 𝑟𝑟𝑟𝑟2(𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃2 + sin2 𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑2)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2
. (17)

Only in harmonic and isotropic coordinates, it is 
possible to write the linear velocity in the form 
indicated above.

Next, it is necessary to derive the Hamiltonian, 
which we will subsequently average. The expression 
to determine the Hamilton function is given as [34]:

𝐻𝐻𝐻𝐻 = (�⃗�𝑝𝑝𝑝 ∙ �⃗�𝑣𝑣𝑣) − 𝐿𝐿𝐿𝐿,                       (18)

First, we look for the form of the generalized 
momentum �⃗�𝑝𝑝𝑝. Thus,

�⃗�𝑝𝑝𝑝 =
𝜕𝜕𝜕𝜕𝐿𝐿𝐿𝐿
𝜕𝜕𝜕𝜕�⃗�𝑣𝑣𝑣

= �1 +
𝑣𝑣𝑣𝑣2

2𝑐𝑐𝑐𝑐2
+

3𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0

𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟
−

3𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃)�𝑚𝑚𝑚𝑚�⃗�𝑣𝑣𝑣 −
2𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3

�𝑟𝑟𝑟𝑟 × 𝐽𝐽𝐽𝐽�.                         (19)

Taking into account (16) – (19), the Hamiltonian takes the following form:

𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 +
𝑝𝑝𝑝𝑝2

2𝑚𝑚𝑚𝑚
−
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟

+
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑄𝑄𝑄𝑄
𝑟𝑟𝑟𝑟3

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) −
𝑝𝑝𝑝𝑝4

8𝑐𝑐𝑐𝑐2𝑚𝑚𝑚𝑚3 −
3𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0𝑝𝑝𝑝𝑝2

2𝑐𝑐𝑐𝑐2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+

+
𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0

2𝑚𝑚𝑚𝑚
2𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟2

+
3𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄𝑝𝑝𝑝𝑝2

2𝑐𝑐𝑐𝑐2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟3
𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) −

𝐺𝐺𝐺𝐺2𝑚𝑚𝑚𝑚0𝑚𝑚𝑚𝑚𝑄𝑄𝑄𝑄
𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟4

𝑃𝑃𝑃𝑃2(cos 𝜃𝜃𝜃𝜃) +
2𝐺𝐺𝐺𝐺��⃗�𝑝𝑝𝑝 ∙ �𝑟𝑟𝑟𝑟 × 𝐽𝐽𝐽𝐽��

𝑐𝑐𝑐𝑐2𝑟𝑟𝑟𝑟3
.                     (20)

For simplicity, we consider the motion of test 
particle on the equatorial plane, i.e., 𝜃𝜃𝜃𝜃 = 𝜋𝜋𝜋𝜋/2. Now, 
according to the adiabatic theory, we should average 
each term in (20) over the period 𝑇𝑇𝑇𝑇, where the 
average of a function 𝑓𝑓𝑓𝑓 is defined as:

𝑓𝑓𝑓𝑓̅ =
1
𝑇𝑇𝑇𝑇
� 𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇

0
.                       (21)

In this work, for convenience, averaging is 
carried out using the non-relativistic orbital angular 
momentum 𝑀𝑀𝑀𝑀 in polar coordinates

𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟2
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

,                        (22)

which allows us to change from an integral over 𝑑𝑑𝑑𝑑 to 
and integral over 𝜑𝜑𝜑𝜑. Here, we use the solution to the 
Kepler problem [34]

𝑟𝑟𝑟𝑟 =
𝑃𝑃𝑃𝑃

1 + 𝑚𝑚𝑚𝑚 cos𝜑𝜑𝜑𝜑
, 0 < 𝜑𝜑𝜑𝜑 < 2𝜋𝜋𝜋𝜋,               (23)

where 𝑚𝑚𝑚𝑚 is the orbit eccentricity as before, 𝑃𝑃𝑃𝑃 is the 
semilactus rectum, and 𝜑𝜑𝜑𝜑 is the polar angle. 
Therefore, it turns out that

𝑓𝑓𝑓𝑓̅ =
1
𝑇𝑇𝑇𝑇
� 𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑

𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
2𝜋𝜋𝜋𝜋

0
=

=
𝑚𝑚𝑚𝑚
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀

� 𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑)𝑟𝑟𝑟𝑟2𝑑𝑑𝑑𝑑𝜑𝜑𝜑𝜑
2𝜋𝜋𝜋𝜋

0
.                   (24)

In addition, to average terms in Eq. (20) with the 
momentum �⃗�𝑝𝑝𝑝 = 𝑚𝑚𝑚𝑚�⃗�𝑣𝑣𝑣, we use the following form of 
the test particle velocity:

�⃗�𝑣𝑣𝑣 =
𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃

{−𝚤𝚤𝚤𝚤 sin𝜑𝜑𝜑𝜑 + 𝚥𝚥𝚥𝚥(𝑚𝑚𝑚𝑚 + cos𝜑𝜑𝜑𝜑)}.        (25)

It is also important to mention that one is free to 
choose the direction of the central body rotation. For 
simplicity and practical purposes, it is preferred to 
align it along the 𝑧𝑧𝑧𝑧 axis as 𝐽𝐽𝐽𝐽 = 𝐽𝐽𝐽𝐽𝑘𝑘𝑘𝑘�⃗ . For a test particle 
moving in the equatorial plane, its orbital angular 
momentum direction coincides with the proper 
angular momentum of the central body, i.e., 𝑀𝑀𝑀𝑀��⃗ ↑↑ 𝐽𝐽𝐽𝐽,
hence 𝑀𝑀𝑀𝑀��⃗ = 𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘�⃗ .

Applying Eq. (21) to each term in Eq. (20) and 
using the formula for the period 𝑇𝑇𝑇𝑇 = 2𝜋𝜋𝜋𝜋𝑀𝑀𝑀𝑀0

3

𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼2
[34], one 

obtains the averaged Hamilton function:
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𝐻𝐻𝐻𝐻� = 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐2 −
𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼2

2𝑀𝑀𝑀𝑀0
2 −

3𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼4

𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
3𝑀𝑀𝑀𝑀

+
15𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼4

8𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
4 +

2𝑚𝑚𝑚𝑚2𝛼𝛼𝛼𝛼4𝐽𝐽𝐽𝐽
𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0

3𝑀𝑀𝑀𝑀2 −

−
𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼4𝑄𝑄𝑄𝑄

2𝑚𝑚𝑚𝑚0𝑀𝑀𝑀𝑀0
3𝑀𝑀𝑀𝑀3 −

3𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼6𝑄𝑄𝑄𝑄
2𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0

3𝑀𝑀𝑀𝑀5 +
5𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼6𝑄𝑄𝑄𝑄

4𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
5𝑀𝑀𝑀𝑀3 .                                                 (26)

As expected, the averaged Hamiltonian depends 
on the adiabatic invariant 𝑀𝑀𝑀𝑀0 and the orbital angular 
momentum 𝑀𝑀𝑀𝑀. The next step is to find the form of 

the angular velocity Ω���⃗ . For this, according to Eq. 
(7), we need to take the partial derivative of 𝐻𝐻𝐻𝐻� with 
respect to 𝑀𝑀𝑀𝑀��⃗ . The result is the following:

Ω���⃗ = �
3𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼4

𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
3𝑀𝑀𝑀𝑀2 −

4𝑚𝑚𝑚𝑚2𝛼𝛼𝛼𝛼4𝐽𝐽𝐽𝐽
𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0

3𝑀𝑀𝑀𝑀3 +
3𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼4𝑄𝑄𝑄𝑄

2𝑚𝑚𝑚𝑚0𝑀𝑀𝑀𝑀0
3𝑀𝑀𝑀𝑀4 +

15𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼6𝑄𝑄𝑄𝑄
2𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0

3𝑀𝑀𝑀𝑀6 −
15𝑚𝑚𝑚𝑚3𝛼𝛼𝛼𝛼6𝑄𝑄𝑄𝑄

4𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀0
5𝑀𝑀𝑀𝑀4� 𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀�����⃗ .                   (27)

Finally, to find the perihelion shift angle ∆𝑔𝑔𝑔𝑔, we 
multiply the angular velocity module Ω���⃗ by the 
orbital period 𝑇𝑇𝑇𝑇 of a test particle. Thereby, we get 
the form:

∆𝑔𝑔𝑔𝑔 =
6𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0

𝑐𝑐𝑐𝑐2𝑃𝑃𝑃𝑃
−

8𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐽𝐽𝐽𝐽
𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃

+

+
3𝜋𝜋𝜋𝜋𝑄𝑄𝑄𝑄
𝑚𝑚𝑚𝑚0𝑃𝑃𝑃𝑃2

+
15𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄(1 + 𝑚𝑚𝑚𝑚2)

2𝑐𝑐𝑐𝑐2𝑃𝑃𝑃𝑃3
,             (28)

where 𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀2/𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼 = 𝑎𝑎𝑎𝑎(1 − 𝑚𝑚𝑚𝑚2), 𝑎𝑎𝑎𝑎 is the semi-
major axis of the orbit.

From Eq. (28), we can see that for the 
considered problem the principle of superposition of 
effects is valid due to the approximate character of 
the solution as given in terms of the source mass, 
angular momentum and quadrupole moment. The 
first term corresponds to the solution of the 
Schwarzschild problem (i.e., due to the curvature of 
spacetime caused by the mass of the central body); 
the second term arises as a result of accounting for 
the rotation of the source (it appears as the frame 
dragging effect – the Lense-Thirring effect); the 
third term is the classical correction due to the 
quadrupole moment, as a consequence of the source 
deformation; and the fourth term is the relativistic 
correction for the quadrupole moment.

It should be noted, that the effect of perihelion 
shift (rotation) in the Schwarzschild problem is 
associated with the appearance in the Hamiltonian 
of the dependence on orbital momentum 𝑀𝑀𝑀𝑀. In 
classical mechanics, i.e., in the Kepler problem, 

there is no such dependence and the perihelion 
remains motionless.

Furthermore, the resulting expression (28) for 
the perihelion shift in the limits

• 𝐽𝐽𝐽𝐽 = 0,𝑄𝑄𝑄𝑄 = 0 reduces to the Schwarzschild 
case [14, 35];

• 𝐽𝐽𝐽𝐽 ≠ 0 (𝐽𝐽𝐽𝐽2 = 0),𝑄𝑄𝑄𝑄 = 0 reduces to the Lense-
Thirring effect [14, 35];

• 𝐽𝐽𝐽𝐽 = 0,𝑄𝑄𝑄𝑄 ≠ 0 reduces to the case c of a static 
deformed source [36];

• 𝐽𝐽𝐽𝐽 ≠ 0 (𝐽𝐽𝐽𝐽2 ≠ 0),𝑄𝑄𝑄𝑄 ≠ 0 reduces to the case of 
the external Fock’s metric [33].

To be more precise, in the extended Fock metric 
𝑄𝑄𝑄𝑄 = κ 𝐽𝐽𝐽𝐽2

𝑚𝑚𝑚𝑚0𝑐𝑐𝑐𝑐2
, different values of κ, correspond to the 

following limiting cases (in the ~1/𝑐𝑐𝑐𝑐2
approximation):

• at κ = 1 for the Kerr metric;
• at κ = 4/7 for the liquid body metric;
• at κ = 15/28 for the solid body metric.
When comparing, one must keep in mind that in 

Ref. [14] the angular momentum of the central body 
is denoted by 𝑆𝑆𝑆𝑆0 = 𝐽𝐽𝐽𝐽 and quadrupole moment in 
[36] is denoted by 𝐷𝐷𝐷𝐷, which is linked with 𝑄𝑄𝑄𝑄 of this 
work by 𝑄𝑄𝑄𝑄 = −𝐷𝐷𝐷𝐷/2.

Analysis of the results

Now we apply Eq. (28) to estimate the 
perihelion shift of the Solar system inner planets: 
Mercury, Venus and Earth. For calculations, we use 
the Sun mass, radius, angular momentum and 
quadrupole moment. The test body is a planet so 
that its shape and size are not taken into account. 
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Usually, the quadrupole parameter 𝐽𝐽𝐽𝐽2 is chosen 
instead of the quadrupole moment 𝑄𝑄𝑄𝑄. There is a 
straightforward relation between them [35]:

𝐽𝐽𝐽𝐽2 =
𝑄𝑄𝑄𝑄

4𝑚𝑚𝑚𝑚0𝑅𝑅𝑅𝑅2
,                         (29)

where 𝑚𝑚𝑚𝑚0, 𝑅𝑅𝑅𝑅 are the Sun mass and radius, 
correspondingly. The last experimentally measured 
value of the solar quadrupole parameter is given in 
[37] as 𝐽𝐽𝐽𝐽2 = (2.25 ± 0.9) ∙ 10−7. As for the Sun 
angular moment, unfortunately, there are no values 
in the literature based on observational and 
experimentally studied data. Therefore, to find it, we 
can use the general formula for the angular 
momentum [34]:

𝐽𝐽𝐽𝐽 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,                              (30)
where 𝐼𝐼𝐼𝐼 is the angular velocity of a body rotating 
around its axis and 𝐼𝐼𝐼𝐼 = 2

5
𝑚𝑚𝑚𝑚0𝑅𝑅𝑅𝑅2 is the moment of 

inertia of a sphere. It should be noted that the 
rotation of the Sun is differential, i.e., it decreases 
with the distance from the equator to the poles. 
However, as an example, one can choose the value 
of the angular velocity on the equator 𝐼𝐼𝐼𝐼 = 2.9 ∙
10−6 rad/s [38]. So, the Sun angular momentum is 
approximately 𝐽𝐽𝐽𝐽 = 2.79 ∙ 1042 kg ∙ m2/s.

Table 1 presents the orbital parameters of Mercury, 
Venus, and the Earth [39, 40]. Moreover, all the 
corrections given in Eq. (28) are calculated separately to 
estimate the individual contribution of each effect. All 
values are calculated for 100 Earth years.

Table 1 – Orbital parameters and perihelion shift angles of Mercury, Venus, and the Earth

Planets Mercury Venus Earth
Semi-major axis, 𝑎𝑎𝑎𝑎 (km) 57909082 108208600 149597870

Eccentricity, 𝑚𝑚𝑚𝑚 0.2056 0.0068 0.0167
Semilactus rectum, 𝑃𝑃𝑃𝑃 (km) 55460308 108203681 149556105

Sidereal period, 𝑇𝑇𝑇𝑇 (earth day) 87.968 224.6950 365.242
6𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚0/𝑐𝑐𝑐𝑐2𝑃𝑃𝑃𝑃 43`` 8.63`` 3.84``

8𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐽𝐽𝐽𝐽/𝑐𝑐𝑐𝑐2𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃 0.116`` 0.017`` 0.006``
3𝜋𝜋𝜋𝜋𝑄𝑄𝑄𝑄/𝑚𝑚𝑚𝑚0𝑃𝑃𝑃𝑃2 0.03`` 0.003`` 0.001``

Observational data (43.11±0.45)`` (8.4±4.8)`` (5.0±1.2)``

As can be seen from Table 1, the Mercury orbit 
has the largest value of the perihelion shift. This is 
due to several factors. Firstly, Mercury is closer than 
other planets to the Sun and, therefore, is more 
influenced by its gravitational field. Secondly, 
Mercury rotates around the Sun faster (in one 
hundred Earth years, it makes about 415 
revolutions, while Venus makes about 162 
revolutions, only).

As for Mercury, Venus and the Earth, a 
significant contribution to the perihelion shift is 
made by the effect related to the Sun mass. 
Compared to this, the correction due to the Sun 
rotation for all three planets has less of an impact; 
the classical quadrupole moment correction is even 
less than the latter. In this case, the relativistic 
quadrupole moment correction 15𝜋𝜋𝜋𝜋𝐺𝐺𝐺𝐺𝑄𝑄𝑄𝑄(1 + 𝑚𝑚𝑚𝑚2)/
2𝑐𝑐𝑐𝑐2𝑃𝑃𝑃𝑃3 is negligible in magnitude, so its contribution 
can be ignored for the Solar system.

The calculated values are in good agreement 
with the observational data. According to 
observations, the measurement error for Mercury is 
0.45``, for Venus is 4.8``, and for the Earth is 1.2``. 

This is due to the fact that the perihelion shift is 
more certain for orbits with a large eccentricity (as 
for Mercury). If the orbit is close to circular in shape 
(as for Venus), it becomes much more difficult to 
observe the displacement of its perihelion.

Conclusion
In this article, we considered the motion of test 

particles in the gravitational field of a slowly 
rotating and slightly deformed object within the 
framework of the adiabatic theory. For this purpose, 
the Hartle-Thorne metric was used, expanded in a 
series in powers of ~ 1/c2, and written in harmonic 
coordinates.

The perihelion shift expression was derived for
the Hartle-Thorne metric. The influence of the 
central body rotation and deformation on the test 
particles trajectory was shown. It was also 
demonstrated that the resulting formula satisfies the 
principle of superposition of relativistic effects due 
to the approximate character of the solution as given 
in terms of the source mass, angular momentum and 
quadrupole moment. In the limiting cases, the 
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perihelion shift formula corresponds to the values 
presented in literature.

As an example, the results of this work were 
applied to the inner planets of the Solar system. As 
expected, the main influence on the planets motion 
is exerted by the curvature of spacetime related to 
the Sun mass. Although taking into account the Sun 
rotation and deformation has a minor role, the 
obtained formula for the perihelion shift can be 
applied to exoplanetary or other relativistic systems, 
where their contribution may be more significant.

It would also be interesting to study the motion 
of test particles in the non-equatorial plane applying 
both perturbation and adiabatic theories. This task 
will be considered in future studies.

Acknowledgements

KB, AU and AT acknowledge the Ministry of 
Education and Science of the Republic of 
Kazakhstan, Grant: IRN AP08052311.

References

1. Schwarzschild, K. “On the Gravitational 
Field of a Mass Point According to Einstein's 
Theory”. Sitzungsber. Preuss. Akad. Wiss. 
Phys.Math. Vol.1 (1916): 189.

2. Misner, C.W., Thorne, K.S., and Wheeler,
J.A. Gravitation. San Francisco: W.H. Freeman 
Press, 1973.

3. Ohanian, H.C. and Ruffini, R. Gravitation 
and Spacetime, third edition. Cambridge University 
Press, 2013.

4. Lense, J. and Thirring H. Phys. Z. Vol.19 
(1918): 156.

5. Erez, G. and Rosen, N. Bull. Res. Council 
Israel F Vol.8 (1959): 47. 

6. Hartle, J.B. “Slowly Rotating Relativistic 
Stars. I. Equations of Structure”. Astrophys. J.
Vol.150 (1967): 1050.

7. Hartle, J.B. and Thorne, K.S. “Slowly 
Rotating Relativistic Stars. II. Models for Neutron 
Stars and Supermassive Stars”. Astrophys. J.
Vol.153 (1968): 807.

8. Berti, E. and Stergioulas, N. “Approximate 
matching of analytic and numerical solutions for 
rapidly rotating neutron stars”. Mon. Not. R. Astron. 
Soc. Vol.350 (2004): 1416.

9. Abishev, M.E., Boshkayev, K. A., 
Dzhunushaliev, V.D., and Ivashchuk, V.D. 

“Dilatonic dyon black hole solutions”. Classical and 
Quantum Gravity Vol.32, no.16 (2015): 165010.

10. Abishev, M.E., Boshkayev, K.A., and 
Ivashchuk, V.D. “Dilatonic dyon-like black hole 
solutions in the model with two Abelian gauge 
fields”. European Physical Journal C Vol.77, no.3
(2017): 180.

11. Belissarova, F.B., Boshkayev, K.A., 
Ivashchuk, V.D., and Malybayev, A.N. “Special 
dyon-like black hole solution in the model with two 
Abelian gauge fields and two scalar fields”. Journal 
of Physics Conference Series Vol.1690 (2020): 
012143.

12. Malybayev, A.N., Boshkayev, K.A., and 
Ivashchuk, V.D. “Quasinormal modes in the field of 
a dyon-like dilatonic black hole”. European 
Physical Journal C Vol.81, no.5 (2021): 475.

13. Abdil'din, M.M. Mechanics of Einstein's 
gravitation theory [Mekhanika teorii gravitatsii 
Ehjnshtejna]. Alma-Ata: Nauka, 1988 (in Russ).

14. Abdil'din, M.M. The problem of motion of 
bodies in General Relativity [Problema dvizhenia tel 
v obshchey teorii otnositel`nosti]. Almaty: Qazaq 
Universiteti, 2006 (in Russ).

15. Fock, V.A. Theory of space, time and 
gravitation. Pergamon Press – Macmillan Company,
1961.

16. Infeld, L. “Equations of Motion in General 
Relativity Theory and the Action Principle”.
Reviews of Modern Physics Vol.29, no.3 (1957): 
398.

17. Infeld, L. and Plebanski, E. Motion and 
relativism [Dvijenie i relativizm]. Moskow: Nauka, 
1962 (in Russ).

18. Tikhonov, A.N. and Samarskii, A.A. 
Equations of mathematical physics [Uravneniia 
matematicheskoy fiziki]. Moskow: Nauka, 1977 (in 
Russ).

19. Abramowitz, M. and Stegun, I.A. Handbook 
of Mathematical Functions. Dover Publications,
1972.

20. Stergioulas, N. “Rotating Stars in 
Relativity”. Living Reviews in Relativity Vol.6, no.1
(2003): 3.

21. Boshkayev, K. A., Quevedo, H., Abishev,
M.E., Toktarbay, S., and Aimuratov, Ye. K. 
“Correspondence of Fock and Hartle-Thorne 
metrics” [“Sootvetstvie metric Foka i Hartla-
Torna”]. News of the National Academy of Sciences 
of the Republic of Kazakhstan Vol.4, no.290
(2013):3 (in Russ).



90 Adiabatic theory of motion of bodies in the hartle-thorne spacetime

Int. j. math. phys. (Online)                                   International Journal of Mathematics and Physics 13, №1, 82 (2022)

22. Boshkayev, K.A., Suleymanova, Sh.S., 
Aimuratov, Ye.K., Zhami, B.A., Toktarbay, S., 
Taukenova, A.S., and Kalymova, Zh.A. 
“Correspondence of the Kerr and Hartle-Thorne 
metrics” [“Sootvetstvie metric Kerra i Hartla-
Torna”]. News of the National Academy of Sciences 
of the Republic of Kazakhstan Vol.5, no.303 (2015): 
151 (in Russ).

23. Boshkayev, K., Quevedo, H., Nurbakyt, G., 
Malybayev, A., and Urazalina, A. “The Erez-Rosen 
solution versus the Hartle-Thorne solution”.
Symmetry Vol.11 (2019): 1324.

24. Boshkayev, K.A., Malybayev, A.N., 
Quevedo, H., and Nurbakyt, G. “The 
correspondence of the Erez-Rosen solution with the 
Hartle Thorne solution in the limiting case of ~𝑄𝑄𝑄𝑄
and ~𝑀𝑀𝑀𝑀2”. News of the National Academy of 
Sciences of the Republic of Kazakhstan Vol.5, 
no.333 (2020): 19.

25. Weinberg, S. and Wagoner, R.V. 
“Gravitation and Cosmology: Principles and 
Applications of the General Theory of Relativity”.
American Journal of Physics Vol.41, no.4 (1973): 
598.

26. Liu, Q.H. “The Most General Harmonic 
Coordinates for Kerr Metric”. Chinese Physics 
Letters Vol.15, no.5 (1998): 313.

27. Gielen, S. “Group Field Theory and Its 
Cosmology in a Matter Reference Frame”. Universe
Vol.4, no.10 (2018): 103.

28. Galperin, A., Ivanov, E., and Ogievetsky, O. 
“Harmonic Space and Quaternionic Manifolds”.
Annals of Physics Vol.230, no.2 (1994): 201.

29. Garfinkle, D. “Numerical Simulations of 
Generic Singularities”. Phys. Rev. D Vol.65 no.4
(2004): 044029.

30. Abramowicz, M.A., Almergren, G.J.E., 
Kluzniak, W., and Thampan, A.V. “The Hartle-
Thorne circular geodesics” // arXiv e-prints gr-
qc/0312070 (2003).

31. Bini, D., Boshkayev, K., Ruffini, R., and 
Siutsou, I. “Equatorial circular geodesics in the 
Hartle-Thorne spacetime”. Nuovo Cimento C 
Geophysics Space Physics C Vol.36 (2013): 31.

32. Boshkayev, K.A., Quevedo, H., Abutalip,
M.S., Kalymova, Zh.A., and Suleymanova Sh.S. 
“Geodesics in the field of a rotating deformed
gravitational source”. International Journal of 
Modern Physics A Vol.31 (2016): 1641006.

33. Boshkayev, K., Quevedo, H., and Ruffini,
R. “Gravitational field of compact objects in general 
relativity”. Phys. Rev. D Vol.86, no.6 (2012): 
064043.

34. Landau, L.D. and Lifshitz, E.M. Mechanics,
third edition. Dover Publications, 1976.

35. Landau, L.D. and Lifshitz, E.M. The 
classical theory of fields, fourth edition. 
Butterworth-Heinemann, 1975.

36. Boshkayev, K.A., Kalymova, Zh.A., 
Abdualiyeva, B.S., Brisheva, Zh. N., and 
Taukenova, A.S. “Investigation of a test particle 
motion in the equatorial plane of the axially 
symmetric gravitational field in terms of the 
adiabatic theory” [“Aksialdy-simmetriialy 
gravitaciialyk oristin ekvatorlyk zhazyktygynda 
synak denenin kozgalysyn adiabattyk teoriia arkyly 
zertteu”]. Recent contributions to physics Vol.1, 
no.1 (2018): 64 (in Kaz).

37. Park, R.S., Folkner, W.M., Konopliv, A.S. 
and et al. “Precession of Mercury’s Perihelion from 
Ranging to the MESSENGER Spacecraft”.
Astrophysical Journal Vol.153, no.3 (2017): 121.

38. Kippenhahn, R. and Weigert, A. Stellar 
Structure and Evolution. Springer-Verlag, 1994.

39. Will, C.M. Theory and experiment in 
gravitational physics. Cambridge University Press,
1993.

40. Will, C.M. “The Confrontation between 
General Relativity and Experiment”. Living Reviews 
in Relativity Vol.9, no.3 (2006): 100.

© This is an open access article under the (CC)BY-NC license (https://creativecommons.org/licenses/by-
nc/4.0/). Funded by Al-Farabi KazNU.


