Практические задания

по дисциплине Архитектура ЭВМ

(для студентов очной формы обучения)

ЗАДАНИЕ № 1

Системы счисления

Переведите числа в требуемую систему счисления:

$$3754_{8} \rightarrow 2$$

$$2ED_{16} \rightarrow 2$$

$$101111101010100_{2} \rightarrow 8$$

$$1011010100000110_{2} \rightarrow 16$$

$$1100011010_{2} \rightarrow 10$$

$$162_{8} \rightarrow 10$$

$$E23_{16} \rightarrow 10$$

$$141_{10} \rightarrow 2$$

$$141_{10} \rightarrow 8$$

$$141_{10} \rightarrow 16$$

Вопросы для защиты работы

- 1. Какое минимальное основание может иметь система счисления, если в ней записано число 23?
- 2. Переведите числа в требуемую систему счисления:

$$48_{10} \rightarrow 2.$$
 $16_{10} \rightarrow 8.$
 $89_{10} \rightarrow 16.$
 $1101111011_2 \rightarrow 10.$
 $257_8 \rightarrow 10.$
 $7B8_{16} \rightarrow 10.$

- **3.** Двоичное число записано в виде многочлена: $1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0$. Какой вид имеет число в двоичной, десятичной записи?
- **4.** Сравните числа: 11101_2 и $1D_{16}$.
- 5. Переведите в нужную систему счисления:

 $\begin{array}{cccc}
111101001000_2 \rightarrow {}_{16}. \\
1100001111_2 \rightarrow {}_{8}. \\
4F3D_{16} \rightarrow {}_{2}. \\
713_8 \rightarrow {}_{2}.
\end{array}$

6. Составьте таблицу эквивалентов чисел от 0 до 22 для q=10 и q=6.

ЗАДАНИЕ № 2

Умножение целых чисел в ЭВМ

- 1. Начертить блок-схему алгоритма бинарного умножения;
- 2. Перевести в двоичную систему счисления числа для умножения (таб. 1);
- 3. Вручную произвести умножение полученных двоичных чисел по заданному алгоритму;
- 4. Написать программу умножения целых чисел с использованием побитовых операций;
- 5. Оформить отчет (Задание, блок-схема, ручной расчет, текст программы)

ЗАДАНИЕ № 3

Деление целых чисел в ЭВМ

- 1. Начертить блок-схему алгоритма бинарного деления;
- 2. Перевести в двоичную систему счисления числа для деления (таб. 1);
- 3. Вручную произвести деление полученных двоичных чисел по заданному алгоритму;
- 4. Написать программу деления целых чисел с использованием побитовых операций;
- 5. Оформить отчет (Задание, блок-схема, ручной расчет, текст программы)

Таблица 1 - Варианты для задания №2 и №3

№ п/п	Для умножения		Для деления	
1	8	6	70	7
3	7	8	81	9
3	10	6	27	9
4	11	3	42	7
5	10	6	64	8
6	10	8	56	4
7	12	4	25	5
8	9	7	63	9
9	15	4	49	7
10	14	5	45	9
11	10		24	6
12	8	7	72	8
13	13	6	54	6
14	9	8	56	8
15	12	4	35	7
16	12	3	32	4
17	10	7	42	6
18	11	6	51	3
19	12	6	50	10
20	11	4	48	8
21	14	3	32	8
22	17	3	63	7
23	15	4	36	4
24	9	8	52	4
25	11	5	57	3

ЗАДАНИЕ № 4

Получение адреса объекта и содержимого регистров

Вариант 1

Дана матрица Z(4,4). Найти максимальное значение и адрес ячейки памяти, где оно расположено, для положительных элементов побочной диагонали. Вывести содержимое регистра данных DX и указателя сегмента кода CS.

Вариант 2

Найти сумму значений элементов матрицы A(4,4), расположенных над побочной диагональю, значения которых меньше заданного числа Т. Вывести адрес ячейки памяти, где находится вычисленная сумма. Вывести содержимое регистра базы BX и указателя сегмента данных DS.

Вариант 3

Найти сумму и адрес ячейки, где она хранится, для отрицательных элементов под побочной диагональю матрицы X(4,4). Вывести содержимое регистра накопителя AX и указателя экстрасегмента ES.

Вариант 4

Найти номер строки и столбца, а также их адреса ячеек памяти для максимального элемента побочной диагонали матрицы A(5,5). Вывести содержимое регистра счетчика СХ и указателя сегмента стека SS.

Вариант 5

Найти максимальное значение и адрес ячейки памяти, где оно хранится, среди положительных элементов побочной диагонали матрицы Z(5,5). Вывести содержимое регистра данных DX и указателя экстрасегмента ES.

Вариант 6

Для матрицы A(4,4) найти сумму положительных элементов, расположенных на главной диагонали. Вывести адрес ячейки памяти, где эта сумма хранится. Вывести содержимое регистра базы BX и указателя сегмента кода CS.

Вариант 7

Вывести минимальное значение и адрес ячейки, где оно храниться, для элементов под главной диагональю матрицы X(5,5). Вывести содержимое регистра накопителя AX и указателя сегмента кода CS.

Вариант 8

Найти количество отрицательных элементов под побочной диагональю матрицы X(4,4) и адрес, где оно хранится. Вывести содержимое регистра данных DX и указателя сегмента данных DS.

Найти значение суммы и адрес ячейки памяти, где она хранится, для элементов матрицы X(5,5), расположенных под побочной диагональю и равных заданному числу T. Вывести содержимое регистра счетчика CX и указателя сегмента кода CS.

Вариант 10

Найти значение суммы и адрес ячейки памяти, где она хранится, для положительных элементов матрицы X(4,4), которые расположены над побочной диагональю. Вывести содержимое регистра счетчика CX и указателя сегмента данных DS.

Вариант 11

Найти значение суммы и адрес ячейки памяти, где она хранится, для отрицательных элементов матрицы X(4,4), которые расположены под главной диагональю. Вывести содержимое регистра данных DX и указателя сегмента стека SS.

Вариант 12

Дана матрица X(3,3). Найти количество отрицательных элементов, расположенных под главной диагональю, и адрес ячейки памяти, где оно хранится. Вывести содержимое регистра базы BX и указателя сегмента стека SS.

Вариант 13

Дана матрица A(3,3). Найти количество положительных элементов, расположенных над главной диагональю, и адрес ячейки памяти, где оно хранится. Вывести содержимое регистра накопителя AX и указателя сегмента кода CS.

Вариант 14

Вывести на печать номер строки и столбца и адреса, где они хранятся, для максимального элемента среди элементов, расположенных под побочной диагональю матрицы Z(5,5). Вывести содержимое регистра накопителя АХ и указателя сегмента данных DS.

Вариант 15

Вывести номер строки и столбца и адреса ячеек памяти, где они хранятся, для максимального элемента среди элементов, расположенных над побочной диагональю матрицы Z(5,5). Вывести содержимое регистра базы BX и указателя сегмента данных DS.

Вывести на печать номер строки и столбца и адреса ячеек памяти, где они хранятся, для максимального элемента среди элементов, расположенных над главной диагональю матрицы Z(5,5). Вывести содержимое регистра данных DX и указателя сегмента кода CS.

Вариант 17

Вывести номер строки и столбца и адреса ячеек памяти, где они хранятся, для минимального элемента среди элементов, расположенных над главной диагональю матрицы X(5,5). Вывести содержимое регистра счетчика CX и указателя сегмента стека SS.

Вариант 18

Вывести номер строки и столбца и адреса ячеек памяти, где они хранятся, для минимального элемента среди элементов, расположенных под главной диагональю матрицы B(5,5). Вывести содержимое регистра базы BX и указателя сегмента данных DS.

Вариант 19

Вывести номер строки и столбца и адреса ячеек памяти, где они хранятся, для минимального элемента среди элементов, расположенных под побочной диагональю матрицы Z(5,5). Вывести содержимое регистра накопителя АХ и указателя экстрасегмента ES.

Вариант 20

Вывести номер строки и столбца и адреса ячеек памяти, где они хранятся, для минимального элемента среди элементов, расположенных над побочной диагональю матрицы A(5,5). Вывести содержимое регистра счетчика СХ и указателя сегмента кода СS.

Вариант 21

Вывести номер строки и столбца и адреса ячеек памяти, где они хранятся, для минимального элемента среди элементов, расположенных на побочной диагонали матрицы X(5,5). Вывести содержимое регистра базы BX и указателя сегмента стека SS.

Вариант 22

Вывести номер строки и столбца и адреса, где они хранятся, для максимального элемента среди элементов, расположенных на главной диагонали матрицы B(5,5). Вывести содержимое регистра накопителя АХ и указателя сегмента кода CS.

Вариант 23

Вывести номер строки и столбца и адреса ячеек памяти, где они хранятся, для элементов, значения которых равны X, среди элементов,

расположенных над побочной диагональю матрицы A(5,5). Вывести содержимое регистра накопителя AX и указателя сегмента данных DS.

Вариант 24

Вывести номер строки и столбца и адрес ячеек памяти а, где они хранятся, для элементов, значения которых равны X, среди элементов, расположенных под побочной диагональю матрицы X(5,5). Вывести содержимое регистра счетчика CX и указателя сегмента данных DS.

Вариант 25

Вывести номер строки и столбца и адреса ячеек памяти, где они хранятся, для элементов, значения которых равны X, среди элементов, расположенных под главной диагональю матрицы T(5,5). Вывести содержимое регистра счетчика CX и указателя экстрасегмента ES.

ЗАДАНИЕ № 5 Работа с магнитными дисками

Вариант 1

- 1. Вывести время записи одного блока.
- 2. Вывести полное число секторов на дискете.
- 3. Вывести число копий FAT-таблицы.

Вариант 2

- 1. Вывести время перехода между первой и последней дорожками.
- 2. Вывести число элементов корневого каталога.
- 3. Вывести число магнитных головок.

Вариант 3

- 1. Вывести число магнитных головок на жестком диске.
- 2. Вывести число секторов на дорожке жесткого диска.
- 3. Вывести время перехода между соседними дорожками.

Вариант 4

- 1. Вывести время записи 1-го блока.
- 2. Вывести число секторов FAT-таблицы.
- 3. Вывести полное число секторов на диске.

Вариант 5

- 1. Вывести время перехода между соседними дорожками.
- 2. Вывести полное число секторов на диске.
- 3. Вывести число байт в секторе.

- 1. Вывести время перехода между первой и последней дорожками.
- 2. Вывести число секторов перед FAT-таблицей.
- 3. Вывести число элементов корневого каталога.

Вариант 7

- 1. Определить время чтения одного блока.
- 2. Вывести число секторов перед FAT-таблицей.
- 3. Вывести число копий FAT-таблицы.

Вариант 8

- 1. Вывести время перехода между соседними дорожками.
- 2. Вывести число байт в секторе.
- 3. Вывести число магнитных головок на жестком диске.

Вариант 9

- 1. Вывести время перехода между первой и последней дорожками.
- 2. Вывести число магнитных головок на жестком диске.
- 3. Вывести полное число секторов на жестком диске.

Вариант 10

- 1. Вывести число копий FAT-таблицы на жестком диске.
- 2. Вывести число секторов на дорожке диска
- 3. Определить число скрытых секторов.

Вариант 11

- 1. Определить время записи одного блока на дискету а:
- 2. Вывести число байт в секторе.
- 3. Определить число скрытых секторов.

Вариант 12

- 1. Определить время чтения одного блока.
- 2. Вывести число байт в секторе.
- 3. Вывести число секторов перед FAT-таблицей.

Вариант 13

- 1. Определить число скрытых секторов.
- 2. Вывести число копий FAT-таблицы на дискете.

Вариант 14

- 1. Определить время записи одного блока на диск.
- 2. Вывести число байт в секторе диска.
- 3. Определить число скрытых секторов.

- 1. Вывести время перехода между первой и последней дорожками.
- 2. Определить время чтения одного блока.
- 3. Определить число скрытых секторов.

Вариант 16

- 1. Определить время чтения одного блока на жестком диске.
- 2. Определить число скрытых секторов.
- 3. Вывести число элементов корневого каталога.

Вариант 17

- 1. Вывести время перехода между соседними дорожками диска.
- 2. Вывести на печать число секторов в кластере диска.
- 3. Определить число скрытых секторов.

Вариант 18

- 1. Вывести время перехода между первой и последней дорожками.
- 2. Определить время чтения одного блока.
- 3. Вывести число элементов корневого каталога.

Вариант 19

- 1. Определить число скрытых секторов.
- 2. Определить время чтения одного блока.
- 3. Вывести время перехода между первой и последней дорожками.

Вариант 20

- 1. Вывести число копий FAT-таблицы на жестком диске.
- 2. Вывести на печать число секторов в кластере диска.
- 3. Вывести число элементов корневого каталога.

Вариант 21

- 1. Вывести число копий FAT-таблицы на дискете.
- 2. Вывести число элементов корневого каталога.
- 3. Определить время чтения одного блока.

Вариант 22

- 1. Вывести время перехода между первой и последней дорожками диска.
- 2. Вывести на печать число секторов в кластере диска.
- 3. Вывести число элементов корневого каталога.

Вариант 23

- 1. Вывести число секторов перед FAT-таблицей на дискете.
- 2. Вывести число элементов корневого каталога.
- 3. Определить время чтения одного блока.

- 1. Вывести число копий FAT-таблицы на дискете.
- 2. Вывести время перехода между первой и последней дорожками.
- 3. Определить время чтения одного блока.

Вариант 25

- 1. Вывести время перехода между соседними дорожками диска.
- 2. Вывести на печать число секторов в кластере диска.
- 3. Вывести число элементов корневого каталога.

Листинг программы, работающей с магнитными дисками и дискетами (файловая система FAT)

```
#include<stdio.h>
#include<conio.h>
#include<iostream.h>
#include<dos.h>
#include<bios.h>
void main(void)
unsigned char buf[512];
                                                                                //буфер для работы функций
absread(), abswrite()
long time x,time y,time1,time2,time3;
                                                                                //значения времени
int heads, fatsize, fatcut, rootsize, sect_w, sectsize, clustsize, sect_d, ressects, ssect_d, n_ways; // переменные для хранения
атрибутов диска
cout<<"Disk for read?"<<endl<<"1) A:\\"<<endl<<"2) B:\\"<<endl;
                                                                                //выбор диска
cin>>D;
x=0;
if (D==2) x=1;
//====== Определение чтения/записи одного блока 512 байт ====
time1=biostime(0,0L);
                                                                                //показания таймера в начале чтения
for (i=0;i<=5;i++)
                                                                                //чтение осуществляется 5 раз
        absread(x,1,1,&buf);
                                                                                //вызов функции чтения сектора
диска
time2=biostime(0,0L);
                                                                                //показания таймера в конце чтения и
начале записи
for (i=0;i<=5;i++)
                                                                                //запись осуществляется 5 раз
        abswrite(x,1,1,&buf);
                                                                                //вызов функции записи сектора диска
time3=biostime(0,0L);
                                                                                //показания таймера в конце записи
time x=(time2-time1)/5;
                                                                                //расчет среднего времени чтения
сектора диска
time y=(time3-time2)/5;
                                                                                //расчет среднего времени записи
сектора диска
cout<<"Reading time of the first block is "<<time x<<" milisec"<<endl;
                                                                                //вывод времени чтения
cout << "Writing time of the first block is "<< time v<< " milisec" << endl;
                                                                                //вывод времени записи
//========Чтение загрузочного сектора=======
absread(x,1,0,&buf);
                                                                                //вызов функции чтения
sectsize=buf[0xb]+buf[0xc]*256;
                                                                                //число байт в секторе
clustsize=buf[0xd];
                                                                                //число секторов в кластере
ressects=buf[0xe]+buf[0xf]*256;
                                                                                //секторов перед FAT таблицей
fatcut=buf[0x10];
                                                                                //число копий FAT таблицы
rootsize=buf[0x11]+buf[0x12]*256;
                                                                                //число элементов корневого каталога
fatsize=buf[0x16]+buf[0x17]*256;
                                                                                //число секторов в FAT таблице
sect w=buf[0x18]+buf[0x19]*256;
                                                                                //число секторов на дорожке
                                                                                //число магнитных головок
heads=buf[0x1a]+buf[0x1b]*256;
ssect_d = buf[0x1c] + (buf[0x1d] + (buf[0x1e] + buf[0x1f] *256) *256) *256;
                                                                                //число скрытых секторов
sect_d=buf[0x20]+buf[0x21]*256;
                                                                                //полное число секторов
```

```
n ways=sect d/sect w;
                                                                                //обшее число дорожек
cout << "Chislo bait v sectore " << sectsize << endl;
cout<<"Chislo sectorov v klastere "<<clustsize<<endl;</pre>
                                                                                //
cout<<"Sectorov pered FAT-tablicei "<<ressects<<endl;</pre>
                                                                                //
cout<<"Chislo copiy FAT-tablici "<<fatcut<<endl;</pre>
cout << "Elementov kornevogo kataloga "<< rootsize << endl;
                                                                                //
cout << "Chislo sectorov v FAT-tablice "<< fatsize << endl;
                                                                                         вывод атрибутов диска
cout << "Chislo sectorov na dorojke " << sect w << endl;
                                                                                //
cout<<"Chislo magnitnih golovok "<<heads<<endl;
                                                                                //
cout << "Chislo scritih sectorov " << ssect d << endl;
                                                                                //
cout << "Polnoe chislo sectorov " << sect d << endl;
cout << "Obshee chislo dorojek " << n ways << endl;
//==Вычисление времени перехода между соседними дорожками и времени перехода между первой и последней
дорожками=
time1=biostime(0,0L);
                                                                                //показание таймера в начале чтения
соседних дорожек
for(i=0;i<=5;i++)
                                                                                //чтение осуществляется 5 раз
         absread(x,1,sect w*i,&buf);
                                                                                //вызов функции чтения соседних
секторов диска
time2=biostime(0,0L);
                                     //показ. таймера в конце чтения соседних дорожек, в начале чтения первой и
последней дорожки
for (i=0;i<5;i++)
                                                                                //чтение осуществляется 5 раз
         absread(x,1,0,&buf);
                                                                                //вызов функции чтения первой
дорожки
         absread(x,1,n_ways-1,&buf);
                                                                                //вызов функции чтения последней
дорожки
time3=biostime(0,0L);
                                                                                //показ. таймера в конце чтения 1-ой
и последней дорожки
time_x=(time2-time1)/5;
                                                                                //вычисление среднего времени чтения
соседних дорожек
time y=(time3-time2)/5;
                                                                                //вычисление среднего времени чтения
крайних дорожек
cout<<"Vremiya perehoda mejdu dorojkami "<<time x<<" milisec"<<endl;
                                                                                //вывод ср. времени чтения соседних
cout<<"Vremiya perehoda ot pervoi k posledney "<<time y<<" milisec"<<endl;
                                                                                //вывод ср. времени чтения крайних
дорожек
getch();
```