

V Congress of the TURKIC WORLD MATHEMATICIANS Kyrgyzstan, «Issyk-Kul Aurora», 5-7 June, 2014

11	Aliev N., Aliev F., Guliev A., Ilyasov M., Mammadova Y. (Azerbaijan) Series method of rotation of a boundary value problem for the system of hyperbolic	
	equations arising in oil production	158
12	Aliev N., Guliyev A., Tagiyev R., Gasimova K. (Azerbaijan) Existence and	
	uniqueness of solution of the boundary value problem describing by the system of	of
	hyperbolic equations	159
13	Amangaliyeva M., Jenaliyev M., Imanberdiyev K., Ramazanov M. (Kazakhstan)	
	About one inverse problem for the heat equation	160
14	Amangaliyeva M., Jenaliyev M., Kosmakova M., Ramazanov M. (Kazakhstan) O	n
	unique solvability of the boundary value problem for heat equation	161
15	Ananjeva J. (Kyrgyzstan) Approximate solution of the Korteveg-De Vries type	
	equation by additional argument method with strongly nonlinear right part	162
16	Aripov M., Sadullaeva Sh. (Uzbekistan) To investigation of solutions of double	
	degenerate parabolic system with variable coefficients	163
17	Asanova A. (Kazakhstan) On nonlocal boundary value problem with integral	
	condition for quasilinear hyperbolic equation	164
18	Ashirbaeva A. (Kyrgyzstan) Peculiarities of method of additional argument for	
42	equations of higher order	165
19	Ashirbaeva A., Mamaziyaeva E. (Kyrgyzstan) Investigation of solutions of partis	
	operator-differential equations of the second order by the method of additional	
	argument	166
20	Ashirbaeva A., Mambetov J. (Kyrgyzstan) Using the method of the additional	100
20	argument for system of integro-differential equations	167
21	Avdonin S. (USA), Nurtazina K. (Kazakhstan) Source identification for the heat	
~~	equation with memory	168
22	Berdyshev A. (Kazakhstan), Karimov E. (Uzbekistan) On the uniqueness of the	
22	inverse problem for time-fractional mixed type equation	169
23	Burenkov V. (United Kingdom), Tararykova T. (Kazakhstan) The Hardy operator	
20	in Morrey-type spaces	170
24	Burova E. (Kyrgyzstan) Solving of Burgers equation by the additional argument	
24	method	
95		171
25	Danaev N., Daribaev B. (Kazakhstan) An iterative algorithm for numerical	170
oc	solution of heat convection equations	172
26	Danaev N., Tursynbay A., Urmashev B. (Kazakhstan) The numerical solution of	
	Navier-Stokes equations for the incompressible viscous liquid with "speed-pressure	
OW	variables in three-dimensional space	173
27	Dzhobulayeva Zh. (Kazakhstan) On a boundary problem for the system of	
	parabolic equations with the small parameters	174
28	Egemberdiev Sh. (Kyrgyzstan) Reductions of the system of partial differential	
	equations with initial-boundary values description to systems of integral equation	
225 10	by means of an additional argument	175
29	Gadjiev T., Sadykhova N.(Azerbaijan) Removable singularities of solutions of	3-475-11
52.7	degenerate nonlinear elliptic equations on the boundary of domain	176
30	Iakimanskaia T., Skliar S. (Kyrgyzstan) An adaptive numerical method for	
	nonlinear nonstationary convection-diffusion problems	177

AN ITERATIVE ALGORITHM FOR NUMERICAL SOLUTION OF HEAT CONVECTION EQUATIONS

Nargozy Danaev, Beimbet Daribaev Almaty (Kazakhstan)

Nargozy.Danaev@kaznu.kz, beimbet.daribaev@gmail.com

The report focuses on the numerical solution of stationary differential problems in the region D = $\{0 < x_{\alpha} < 1, \alpha = 1, 2\}$ for two-dimensional heat convection equations can be written in the following form [1]:

$$\left(\omega \frac{\partial \psi}{\partial x_2}\right)_{x_1} - \left(\omega \frac{\partial \psi}{\partial x_1}\right)_{x_2} = \frac{1}{Re} \Delta \omega - \frac{Gr}{Re^2} \frac{\partial \theta}{\partial x_1} + f(x_1, x_2),\tag{1}$$

$$\Delta \psi = \omega$$
, (2)

$$\left(\theta \frac{\partial \psi}{\partial x_2}\right)_{x_1} - \left(\theta \frac{\partial \psi}{\partial x_1}\right)_{x_2} = \frac{1}{PrRe} \Delta \theta + g(x_1, x_2),$$
 (3)

here Pr - Prandtl number, Re - Reynolds number, Gr - Grashof number, Δ - Laplace operator.

Considered an iterative algorithm of the type of variable directions, using by conducting auxiliary function of the vorticity with homogeneous boundary values in the following form:

$$\frac{\omega^{n+\frac{1}{2}} - \omega^n}{\tau} + L_{h,\psi}(\omega^n)\psi^{n+\frac{1}{2}} = \frac{1}{Re}\Delta_h\omega^n - \frac{Gr}{Re^2}\theta_{\hat{x}_1}^n + \rho_h\psi^{n+\frac{1}{2}} + f_h, \tag{4}$$

$$\Delta_h \psi^{n+\frac{1}{2}} = \omega^{n+\frac{1}{2}},$$
 (5)

$$\frac{\omega^{n+1} - \omega^{n+\frac{1}{2}}}{\tau} = \frac{1}{Re} \Delta_h \left(\omega^{n+1} - \omega^n \right), \qquad (6)$$

$$\Delta_h \psi^{n+1} = \omega^{n+1}, \qquad (7)$$

$$\Delta_h \psi^{n+1} = \omega^{n+1}, \tag{7}$$

$$L_{h,\theta}(\psi^n)\theta^{n+1} = \frac{1}{PrRe}\Delta_h\theta^{n+1} + g_h, \qquad (8)$$

here $L_{h,\psi}$, $L_{h,\theta}$ - symmetric differential operators corresponding to the approximation of the convective terms in the equations of motion and temperature, $\rho_h > 0$.

An iterative algorithm of variational type minimal corrections for implementation of auxiliary nonself-adjoint grid equations was considered [2]. On example of the differential problem with boundary conditions:

discussion of the calculation result and software implementation details of the algorithm on a multiprocessor cluster was conducted.

REFERENCES

- Rouch P. (1980) Vychislitel'naya gidrodinamika. "Mir", Moskva, 616 p.
- Samarskiy A.A., Nikolaev E.S. (2004) Metody resheniya setochnykh uravneniy. "Nauka", Moskva, 592 p.