COMPUTER SYSTEMS
LECTURE 9 - VIRTUAL

LAST TIME IN LECTURE 9

= Protection and translation required for multiprogramming
= Base and bounds was early simple scheme

= Page-based translation and protection avoids need for memory compaction,
easy allocation by OS
= But need to indirect in large page table on every access

= Address spaces accessed sparsely

= Can_use multi-level page table to hold translation/protection information, but
implies multiple memory accesses per reference

= Address space access with locality

= Can use “translation lookaside buffer” (TLB) to cache address translations
(sometimes known as address translation cache)

= Still have to walk page tables on TLB miss, can be hardware or software talk

= Virtual memory uses DRAM as a “cache” of disk memory, allows very cheap
main memory

RY MANAGEMENT

= Can separate into orthogonal functions:
= Translation (mapping of virtual address to physical address)
= Protection (permission to access word in memory)

= Virtual memory (transparent extension of memory space using slower disk or
flash storage)

= But most modern systems provide support for all the above functions with
a single page-based system

MODERN VIRTUAL
MEMORY SYSTEMS

ILLUSION OF A LARGE, PRIVATE, UNIFORM STORE 0S
Protection & Privacy
several users, each with their private address
space and one or more shared address spaces user.
page table Pl name space '
: Secondar
Demand Paging m
Provides the ability to run programs larger Primary [N~
than the primary memory Memor_/
—
Hides differences in machine configurations S
The price is address translation on N
each memory reference
VA | MappPINg | pa

N Ea

FNIFRARNCIIICAL AUl

TAB LE;rtuaI Address
3 2 2 1 1 0

1 pl 2|1 p22]|1 offset
\ A J

Y Y
10-bit 10-bit
L1 index L2 index

v offset ‘

y

vz
it
Root of Current Level 1
Page Table Page Table

(Processor Register)

page in primary memory
page in secondary memory
PTE of a nonexistent page

==
“

Level 2

Page Tables

Data Pages

Physical Memory

FAUGL-DAOLIJ VINI UALS

MEMORY MACHINE

(HAagepaWXRE PAGE-TABLE WALK) Page Fault?

. . . ? . . .
Protection violation: Protection violation?

Virtual vsical Virtual
Address Physica Address Physical
\' Address & Address
Inst. ‘/ Inst. Decode L Data Data
TLB Cache TLB Cache
Miss? | | Miss? | 1
- Table Walker
- Physical
Physical * Memory Controller : Y
Address Address

Ph{sical Address

Main Memory (DRAM)

= Assumes page tables held in untranslated physical
memory

0

ADDRESS [RANSLATION:

PUTTING IT ALL TOGETHAR

B hardware
] hardware or software

] software

the pagp is
& memory denied permitted
Page Fault ‘Update TIB | |Protection Physical
(OS loads page) o T e Fault Address
l (to cache)
Where? SEGFAULT

PAGE FAULT HANDLER

When the referenced page is not in DRAM:
= The missing page is located (or created)
= [t is brought in from disk, and page table is updated

= Another job may be run on the CPU while the first job waits for the
requested page to be read from disk

= If no free pages are left, a page is swapped out
= Pseudo-LRU replacement policy, implemented in software

=Since it takes a long time to transfer a page (msecs),
page faults are handled completely in software by
the OS

= Untranslated addressing mode is essential to allow kernel to access page
tables

0

HANDLING VM-RELATED

EX Inst | [Inst. IData | [Data
. Decode > +
LB | |[Cache TLB Cache
TLB miss? Page Fault? TLB miss? Plage Fault?
Protection violation? Protection violation?

= Handling a TLB miss needs a hardware or software
mechanism to refill TLB

= Handling a page fault (e.g., page is on disk) needs a
restartable exception so software handler can resume after
retrieving page

= Precise exceptions are easy to restart

= Can be imprecise but restartable, but this complicates OS
software

= Handling protection violation may abort process
= But often handled the same as a page fault

0

ADDRESS TRANSLATION IN

CP Inst | |Inst. IData | |Data
Decode > +
TLB | [Cache TLB Cache
TLB miss? 1Page Fault? TLB miss? Plage Fault?
Protection violation? Protection violation?
=Need to cope with additional latency of

TLB:
= slow down the clock?

= pipeline the TLB and cache access?
= virtual address caches
= parallel TLB/cache access

e

VIRTUAL ADDRESQLACHES

_.

A |Primary
Memory

Alternative: place the cache before the TLB

VA
CPU }—

E

TLB

PA

= one-step process in case of a hit (+)

= cache needs to be flushed on a context switch unless
address space identifiers (ASIDs) included in tags (-)

= aliasing problems due to the sharing of pages (-)

Primary

> Memory

(StrongARM)

= maintaining cache coherence (-) (see later in course)

=)

ADDRESSED CALMRE

(VIRTUAL

INDEX/VIRTUAL TAG)

Inst.

Cach

t \IMiss?
Inst.
TLB

t

Decode

> +

Data
Cache

N
1 \Qj/ss?

Physical

Address |

Hardware Page

;| Table Walker

— TLB

Data

1T

Instruction data

Translate on miss

Memory Controller

Physical
Address

Ph{ﬂcaIAddress

Main Memory (DRAM)

)

ALIASING IN VIRTUAL-

ADDRESS CACHES

VA,—{

Data Pages

PA

VA, —

Two virtual pages share
one physical page

Data

1st Copy of Data at PA

VA,

2nd Copy of Data at PA

Virtual cache can have two copies of
same physical data. Writes to one
copy not visible to reads of other!

General Solution: Prevent aliases coexisting in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this ensures
all VAs accessing same PA will conflict in direct-mapped cache

(early SPARCs)

e

CUNUURRENT ACLESS 11U
TLB & CACHE

TITAT TAITIYEVAD] ytla
(V VPN '.'-- .HY | L
{ \ /
Direct-map Cache
TAG) [Mo (o
PA PPN Page Offset 2°-byte block
AN /
Tag ‘= D \
hit?\[/Physma Tag Data

Index L is available without consulting the TLB
PRlcache and TLB accesses can begin simultaneously!
Tag comparison is made after both accesses are completed

Cases:L+b=k L+b<k L+b>k

VIRTUAL-INDEX PHYSICAL-

Virtual

TA :‘.Y-E’E: NN T -Eelﬂvls ORdANIJ(A‘ﬁbN

Direct-map| Direct-map|
TLB T k 2t blocks 2-blocks
l ' th
PA PPN Page Offset Tag
N\ | sl =) oo 0o —>
Tag hit?
Data

After the PPN is known, 2° physical tags are compared

How does this scheme scale to larger caches?

CONCURRENT ACCESS TO
TLB & LARGE LlV|rtuaIIndex

THE @A{ YAJTTTIT I -; /T;)*fg%bféeZE
¢
TLB
PA PPN Phge Offset b

N\ /

VA,

VA, [PF

L1 PA cache
Direct-map

'PPN_| Data

Tag

Can VA, and VA, both map to PA ?

A SOLUTION VIA SECOND

LE k
Memory
CPU Memory
Memory
RF Memory

Usually a common L2 cache backs up both Instruction
and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches
* Inclusive means L2 has copy of any line in either L1

AIN L ITAALLIAJDIINGT UJOLING

LZ [MIPS R10000,1996] Virtual Index

, \ L1 PA cache
VA VPN a Page Offset b | Direct-map
| Into L2 tag vA, |PPN, | Data

TLB

VA, |PPN Data

a

PA PPN Pdge Offset b
N\ /
PPN
Tag ' (=)~ hit?

= Suppose VAl and VA2 both map to PA and
VALl is already in L1, L2 (VA1 # VA?2)

= After VA2 is resolved to PA, a collision will

be detected in L2.
= VA1 will be purged from L1 and L2, and _

VA2 will be loaded = no aliasing !

0

— PA|a; | Data

©

ANTI-ALIASING USING L2 FOR
A NFTTW:[upggexo AP ESSEHGXLTL

A Data
TLB
1 VA, | Data
PA PPN Page Offset b L1 VA Cache
N /
Tag Physical ¢ _<||rtual Tag
Index & Tag
PA VA, | Data
Physically-addressed L2 can also be
used to avoid aliases in virtually- L2 PA Cache
addressed L1 L2 “contains” L1

©

ATLAR RENISLIED

= PAR’s contain the VPN’s of the pages
resident in primary memory

= Advantage: The size is proportional to
the size of the primary memory

= What is the disadvantage ?

PPN

PAR’s

VPN

)

HASHED PAGE TABLE:
en—a A NMNAneAS SO

CIATIVE

Page Table

C\ PA of PTE
uy

= Hashed Page Table is typically 2 to 3 times larger
than the number of PPN’s to reduce collision
probability

Base of Table

= [t can also contain DPN’s for some non-resident
pages (not common)

= [f a translation cannot be resolved in this table
then the software consults a data structure that
has an entry for every existing page (e.g., full
page table)

s

Primary
Memory

=)

POWER PC HASHED PAGE

T A!ITL.\E 80-bit VA

Offset 7\ PAof Slot
hash (I'_/
[Base of Table

= Each hash table slot has 8 PTE's <VPN,PPN> that
are searched sequentially

= [If the first hash slot fails, an alternate hash
function is used to look in another slot

All these steps are done in hardware!

= Hashed Table is typically 2 to 3 times larger
than the number of physical pages

= The full backup Page Table is managed in
software

Page Table

v

Primary
Memory

)

VM skl WRES b RACK

ne program owned entire machine

) RMMmMSiE‘S““g for 1/0

= Base & bound: translation and protection between programs
(supports swapping entire programs but not demand-paged
virtual memory

= Problem with external fragmentation (holes in memory), needed
occasional memory defragmentation as new jobs arrived

= Time sharing

= More interactive programs, waiting for user. Also, more
jobs/second.

= Motivated move to fixed-size page translation and protection, no
external fragmentation (but now internal fragmentation, wasted
bytes in page)

= Motivated adoption of virtual memory to allow more jobs to
share limited physical memory resources while holding working
set in memory

= Virtual Machine Monitors
= Run multiple operating systems on one machine
= [dea from 1970s IBM mainframes, now common on laptops
= e.g., run Windows on top of Mac OS X
= Hardware support for two levels of translation/protection

o

VIRTUAL MEMORY USE
T O @ Ayesktop /laptops/smartphones have full demand-

tual meémory
= Portability between machines with different memory sizes

= Protection between multiple users or multiple tasks
= Share small physical memory among active tasks
= Simplifies implementation of some OS features

= Vector supercomputers have translation and protection but
rarely complete demand-paging

= (Older Crays: base&bound, Japanese & Cray X1/X2: pages)

= Don’t waste expensive CPU time thrashing to disk (make jobs fit
in memory)

= Mostly run in batch mode (run set of jobs that fits in memory)
= Difficult to implement restartable vector instructions

o

VIRTUAL MEMORY USE
TODAY - 2

= Most embedded processors and DSPs provide physical
addressing only

= Can’t afford area/speed/power budget for virtual memory
support

« Often there is no secondary storage to swap to!

= Programs custom written for particular memory configuration
in product

= Difficult to implement restartable instructions for exposed
architectures

o

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

