


 Protection and translation required for multiprogramming 

 Base and bounds was early simple scheme 

 Page-based translation and protection avoids need for memory compaction, 

easy allocation by OS 

 But need to indirect in large page table on every access 

 Address spaces accessed sparsely 

 Can use multi-level page table to hold translation/protection information, but 

implies multiple memory accesses per reference 

 Address space access with locality 

 Can use “translation lookaside buffer” (TLB) to cache address translations 

(sometimes known as address translation cache) 

 Still have to walk page tables on TLB miss, can be hardware or software talk 

 Virtual memory uses DRAM as a “cache” of disk memory, allows very cheap 

main memory 
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 Can separate into orthogonal functions: 

 Translation (mapping of virtual address to physical address) 

 Protection (permission to access word in memory) 

 Virtual memory (transparent extension of memory space using slower disk or 

flash storage) 

 But most modern systems provide support for all the above functions with 

a single page-based system 
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 Assumes page tables held in untranslated physical 

memory 6 
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When the referenced page is not in DRAM: 

 The missing page is located (or created) 

 It is brought in from disk, and page table is updated 

 Another job may be run on the CPU while the first job waits for the 

requested page to be read from disk 

 If no free pages are left, a page is swapped out 

 Pseudo-LRU replacement policy, implemented in software 

Since it takes a long time to transfer a page (msecs), 

page faults are handled completely in software by 

the OS 

 Untranslated addressing mode is essential to allow kernel to access page 

tables 
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 Handling a TLB miss needs a hardware or software 

mechanism to refill TLB  

 Handling a page fault (e.g., page is on disk) needs a 

restartable exception so software handler can resume after 

retrieving page 

 Precise exceptions are easy to restart 

 Can be imprecise but restartable, but this complicates OS 

software 

 Handling protection violation may abort process 

 But often handled the same as a page fault 
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Need to cope with additional latency of 

TLB: 

   slow down the clock? 

   pipeline the TLB and cache access? 

   virtual address caches 

   parallel TLB/cache access 
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 one-step process in case of a hit (+) 

 cache needs to be flushed on a context switch unless 

address space identifiers (ASIDs) included in tags (-) 

 aliasing problems due to the sharing of pages (-) 

 maintaining cache coherence (-)   (see later in course) 
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General Solution:  Prevent aliases coexisting in cache 
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Index L is available without consulting the TLB 
cache and TLB accesses can begin simultaneously! 

Tag comparison is made after both accesses are completed 

Cases: L + b = k,  L + b < k,  L + b > k 
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How does this scheme scale to larger caches? 
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Can VA1 and VA2 both map to PA ?  
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Usually a  common L2 cache backs up both Instruction 
and Data L1 caches 
 
L2 is “inclusive” of both Instruction and Data caches 

• Inclusive means L2 has copy of any line in either L1 
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 Suppose VA1 and VA2 both map to PA and 

VA1 is already in L1, L2 (VA1  VA2) 

 After VA2 is resolved to PA, a collision will 

be detected in L2. 

 VA1 will be purged from L1 and L2, and 

VA2 will be loaded   no aliasing !  
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 One PAR for each physical page 

 

 PAR’s contain the VPN’s of the pages 

resident in primary memory 

 

 Advantage:  The size is proportional to 

the size of the primary memory 

 

 What is the disadvantage ? 
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 Hashed Page Table is typically 2 to 3 times larger 

than the number of PPN’s to reduce collision 

probability  

 It can also contain DPN’s for some non-resident 

pages (not common) 

 If a translation cannot be resolved in this table 

then the software consults a data structure that 

has an entry for every existing page (e.g., full 

page table) 

21 

hash 
Offset 

Base of Table 

+ 
PA of PTE 

Primary 
Memory 

VPN  PID  PPN 

Page Table 

VPN  d Virtual Address 

VPN  PID  DPN 

VPN  PID 

PID 



22 

 Each hash table slot has 8 PTE's <VPN,PPN> that 

are searched sequentially 

 If the first hash slot fails, an alternate hash 

function is used to look in another slot 

  All these steps are done in hardware! 

 Hashed Table is typically 2 to 3 times larger 

than the number of physical pages 

 The full backup Page Table is managed in 

software 
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 Bare machine, only physical addresses 

 One program owned entire machine 

 Batch-style multiprogramming 

 Several programs sharing CPU while waiting for I/O 

 Base & bound: translation and protection between programs 

(supports swapping entire programs but not demand-paged 

virtual memory) 

 Problem with external fragmentation (holes in memory), needed 

occasional memory defragmentation as new jobs arrived 

 Time sharing 

 More interactive programs, waiting for user.  Also, more 

jobs/second. 

 Motivated move to fixed-size page translation and protection, no 

external fragmentation (but now internal fragmentation, wasted 

bytes in page) 

 Motivated adoption of virtual memory to allow more jobs to 

share limited physical memory resources while holding working 

set in memory 

 Virtual Machine Monitors 

 Run multiple operating systems on one machine 

 Idea from 1970s IBM mainframes, now common on laptops 

 e.g., run Windows on top of Mac OS X 

 Hardware support for two levels of translation/protection 

 Guest OS virtual -> Guest OS physical -> Host machine physical 
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 Servers/desktops/laptops/smartphones have full demand-

paged virtual memory 

 Portability between machines with different memory sizes 

 Protection between multiple users or multiple tasks 

 Share small physical memory among active tasks 

 Simplifies implementation of some OS features 

 Vector supercomputers have translation and protection but 

rarely complete demand-paging 

 (Older Crays: base&bound, Japanese & Cray X1/X2: pages) 

 Don’t waste expensive CPU time thrashing to disk (make jobs fit 

in memory) 

 Mostly run in batch mode (run set of jobs that fits in memory) 

 Difficult to implement restartable vector instructions 
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 Most embedded processors and DSPs provide physical 

addressing only 

 Can’t afford area/speed/power budget for virtual memory 

support 

 Often there is no secondary storage to swap to! 

 Programs custom written for particular memory configuration 

in product 

 Difficult to implement restartable instructions for exposed 

architectures 
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 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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