

 Protection and translation required for multiprogramming

 Base and bounds was early simple scheme

 Page-based translation and protection avoids need for memory compaction,

easy allocation by OS

 But need to indirect in large page table on every access

 Address spaces accessed sparsely

 Can use multi-level page table to hold translation/protection information, but

implies multiple memory accesses per reference

 Address space access with locality

 Can use “translation lookaside buffer” (TLB) to cache address translations

(sometimes known as address translation cache)

 Still have to walk page tables on TLB miss, can be hardware or software talk

 Virtual memory uses DRAM as a “cache” of disk memory, allows very cheap

main memory

2

 Can separate into orthogonal functions:

 Translation (mapping of virtual address to physical address)

 Protection (permission to access word in memory)

 Virtual memory (transparent extension of memory space using slower disk or

flash storage)

 But most modern systems provide support for all the above functions with

a single page-based system

3

4

Protection & Privacy
several users, each with their private address
space and one or more shared address spaces

 page table name space

Demand Paging
Provides the ability to run programs larger
than the primary memory

Hides differences in machine configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Secondary
Storage

VA PA mapping

TLB

5

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of Current
Page Table

p1

offset

p2

Virtual Address

(Processor Register)

PTE of a nonexistent page

p1 p2 offset

0 1
1

1
2

2
1

2
2

3
1

10-bit
L1 index

10-bit
L2 index

P
h

ys
ic

al
 M

em
o

ry

 Assumes page tables held in untranslated physical

memory 6

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W +

Page Fault?
Protection violation?

Page Fault?
Protection violation?

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

7

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

 the page is

 memory  memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT Where?

When the referenced page is not in DRAM:

 The missing page is located (or created)

 It is brought in from disk, and page table is updated

 Another job may be run on the CPU while the first job waits for the

requested page to be read from disk

 If no free pages are left, a page is swapped out

 Pseudo-LRU replacement policy, implemented in software

Since it takes a long time to transfer a page (msecs),

page faults are handled completely in software by

the OS

 Untranslated addressing mode is essential to allow kernel to access page

tables
8

 Handling a TLB miss needs a hardware or software

mechanism to refill TLB

 Handling a page fault (e.g., page is on disk) needs a

restartable exception so software handler can resume after

retrieving page

 Precise exceptions are easy to restart

 Can be imprecise but restartable, but this complicates OS

software

 Handling protection violation may abort process

 But often handled the same as a page fault

9

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W +

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

Need to cope with additional latency of

TLB:

 slow down the clock?

 pipeline the TLB and cache access?

 virtual address caches

 parallel TLB/cache access

10

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W +

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

 one-step process in case of a hit (+)

 cache needs to be flushed on a context switch unless

address space identifiers (ASIDs) included in tags (-)

 aliasing problems due to the sharing of pages (-)

 maintaining cache coherence (-) (see later in course)

11

CPU
Physical
Cache

TLB
Primary
Memory

VA PA PA

Alternative: place the cache before the TLB

CPU
VA (StrongARM) Virtual

Cache

PA
TLB

Primary
Memory

VA

12

PC

Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W +

Data
TLB

Main Memory (DRAM)

Memory Controller

Physical
Address

Instruction data
Physical Address

Physical
Address

Page-Table Base

Register

Virtual
Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

Translate on miss

13

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two copies of
same physical data. Writes to one
copy not visible to reads of other!

General Solution: Prevent aliases coexisting in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this ensures
all VAs accessing same PA will conflict in direct-mapped cache
(early SPARCs)

14

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously!

Tag comparison is made after both accesses are completed

Cases: L + b = k, L + b < k, L + b > k

 VPN L b

TLB
Direct-map Cache
2L

 blocks
2b-byte block PPN Page Offset

=
hit?

Data Physical Tag
Tag

VA

PA

Virtual
Index

k

15

How does this scheme scale to larger caches?

 VPN a L = k-b b

TLB
Direct-map
2L

 blocks

 PPN Page Offset

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map
2L

 blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

16

Can VA1 and VA2 both map to PA ?

 VPN a Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

17

Usually a common L2 cache backs up both Instruction
and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

• Inclusive means L2 has copy of any line in either L1

CPU

L1 Data
Cache

L1
Instruction
Cache Unified L2

Cache

RF Memory

Memory

Memory

Memory

 Suppose VA1 and VA2 both map to PA and

VA1 is already in L1, L2 (VA1  VA2)

 After VA2 is resolved to PA, a collision will

be detected in L2.

 VA1 will be purged from L1 and L2, and

VA2 will be loaded  no aliasing !

18

 VPN a Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual Index
L1 PA cache
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Direct-Mapped L2

PA a1 Data

PPN

 into L2 tag

19

 VPN Page Offset b

TLB

 PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual Tag”

Physically-addressed L2 can also be
used to avoid aliases in virtually-
addressed L1

 One PAR for each physical page

 PAR’s contain the VPN’s of the pages

resident in primary memory

 Advantage: The size is proportional to

the size of the primary memory

 What is the disadvantage ?

20

VPN

PAR’s

PPN

 Hashed Page Table is typically 2 to 3 times larger

than the number of PPN’s to reduce collision

probability

 It can also contain DPN’s for some non-resident

pages (not common)

 If a translation cannot be resolved in this table

then the software consults a data structure that

has an entry for every existing page (e.g., full

page table)

21

hash
Offset

Base of Table

+
PA of PTE

Primary
Memory

VPN PID PPN

Page Table

VPN d Virtual Address

VPN PID DPN

VPN PID

PID

22

 Each hash table slot has 8 PTE's <VPN,PPN> that

are searched sequentially

 If the first hash slot fails, an alternate hash

function is used to look in another slot

 All these steps are done in hardware!

 Hashed Table is typically 2 to 3 times larger

than the number of physical pages

 The full backup Page Table is managed in

software

Base of Table

hash
Offset +

PA of Slot

Primary
Memory

VPN PPN

Page Table
VPN d 80-bit VA

VPN

 Bare machine, only physical addresses

 One program owned entire machine

 Batch-style multiprogramming

 Several programs sharing CPU while waiting for I/O

 Base & bound: translation and protection between programs

(supports swapping entire programs but not demand-paged

virtual memory)

 Problem with external fragmentation (holes in memory), needed

occasional memory defragmentation as new jobs arrived

 Time sharing

 More interactive programs, waiting for user. Also, more

jobs/second.

 Motivated move to fixed-size page translation and protection, no

external fragmentation (but now internal fragmentation, wasted

bytes in page)

 Motivated adoption of virtual memory to allow more jobs to

share limited physical memory resources while holding working

set in memory

 Virtual Machine Monitors

 Run multiple operating systems on one machine

 Idea from 1970s IBM mainframes, now common on laptops

 e.g., run Windows on top of Mac OS X

 Hardware support for two levels of translation/protection

 Guest OS virtual -> Guest OS physical -> Host machine physical

23

 Servers/desktops/laptops/smartphones have full demand-

paged virtual memory

 Portability between machines with different memory sizes

 Protection between multiple users or multiple tasks

 Share small physical memory among active tasks

 Simplifies implementation of some OS features

 Vector supercomputers have translation and protection but

rarely complete demand-paging

 (Older Crays: base&bound, Japanese & Cray X1/X2: pages)

 Don’t waste expensive CPU time thrashing to disk (make jobs fit

in memory)

 Mostly run in batch mode (run set of jobs that fits in memory)

 Difficult to implement restartable vector instructions

24

 Most embedded processors and DSPs provide physical

addressing only

 Can’t afford area/speed/power budget for virtual memory

support

 Often there is no secondary storage to swap to!

 Programs custom written for particular memory configuration

in product

 Difficult to implement restartable instructions for exposed

architectures

25

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

26

