


3 C’s of cache misses 

 Compulsory, Capacity, Conflict 

Write policies 

 Write back, write-through, write-allocate, no write allocate 

Multi-level cache hierarchies reduce miss 

penalty 

 3 levels common in modern systems (some have 4!) 

 Can change design tradeoffs of L1 cache if known to have L2 

Prefetching: retrieve memory data before CPU 

request 

 Prefetching can waste bandwidth and cause cache pollution 

 Software vs hardware prefetching 

Software memory hierarchy optimizations 

 Loop interchange, loop fusion, cache tiling 
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 In a bare machine, the only kind of address is a physical 

address 
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 Only one program ran at a time, with unrestricted 

access to entire machine (RAM + I/O devices) 

 Addresses in a program depended upon where the 

program was to be loaded in memory 

 But it was more convenient for programmers to write 

location-independent subroutines 
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EDSAC, early 50’s 

How could location independence be achieved? 

Linker and/or loader modify addresses of subroutines and 
callers when building a program memory image 



 Motivation 

 In early machines, I/O was slow and each I/O transfer 

involved the CPU (programmed I/O) 

 Higher throughput possible if CPU and I/O of 2 or 

more programs were overlapped, how? 

multiprogramming with DMA I/O devices, 

interrupts 

 Location-independent programs 

 Programming and storage management ease  

 need for a base register 

 Protection 

 Independent programs should not affect each other 

inadvertently 

 need for a bound register  

 Multiprogramming drives requirement for 

resident supervisor software to manage context 

switches between multiple programs 
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Base and bounds registers are visible/accessible only when 
processor is running in the supervisor mode 
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(Scheme used on all Cray vector supercomputers prior to X1, 2002) 

≥ 

≥ 
Bounds 
Violation? 



Can fold addition of base register into (register+immediate) 
address calculation using a carry-save adder (sums three 
numbers with only a few gate delays more than adding two 
numbers) 8 
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  As users come and go, the storage is “fragmented”.  
  Therefore, at some stage programs have to be moved 
  around to compact the storage.  

OS 
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 Processor-generated address can be split into: 
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Page tables make it possible to store the pages of a 
program non-contiguously. 
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• A Page Table contains the physical address at the start of each 
page 

Physical 
Memory 

Page Number Offset 
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• Each user has a page table  
• Page table contains an entry for each user page 

VA1 User 1 

Page Table  

VA1 User 2 

Page Table  

VA1 User 3 

Page Table  
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 Space required by the page tables (PT) is 
proportional to the address space, number of 
of users, ... 

Too large to keep in registers 

 

 Idea: Keep PTs in the main memory 
 needs one reference to retrieve the page base 

address and another to access the data word 

   doubles the number of memory references! 
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There were many applications 

whose data could not fit in the 

main memory, e.g., payroll 

Paged memory system reduced 

fragmentation but still required the 

whole program to be resident in the 

main memory 
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 Assume an instruction can address all the 

storage on the drum 

 

 Method 1: programmer keeps track of 

addresses in the main memory and 

initiates an I/O transfer when required 

 Difficult, error-prone! 

 Method 2: automatic initiation of I/O 

transfers by software address translation 

 Brooker’s interpretive coding, 

1960 

 Inefficient! 
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Ferranti Mercury 
1956 

40k bits 
main 

640k bits 
drum 

Central Store 

Not just an ancient black art, e.g., IBM Cell microprocessor using in 
Playstation-3 has explicitly managed local store! 
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Secondary 
(Drum) 
32x6 pages 

Primary 
32 Pages 
512 words/page 

Central  
Memory User sees 32 x 6 x 512 words 

of storage 

“A page from secondary 
storage is brought into the 
primary storage whenever it is 
(implicitly) demanded by the 
processor.” 
  Tom Kilburn 

Primary memory as a cache 
for secondary memory 
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Initial 
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1 Page Address 
Register (PAR) per 
page frame 

Compare the effective page address against all 32 PARs 
 match   normal access 
 no match  page fault 
        save the state of the partially executed instruction 

Effective 
Address 

system code 
(not swapped) 
 

system data 
(not swapped) 

0 

31 

PARs 

<effective PN , status> 



On a page fault:  

 Input transfer into a free page is initiated 

 The Page Address Register (PAR) is updated 

 If no free page is left, a page is selected to be replaced (based on usage) 

 The replaced page is written on the drum 

 to minimize drum latency effect, the first empty page on the drum was selected 

 The page table is updated to point to the new location of the page on the 

drum 
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 Page Table Entry (PTE) 

contains: 

 A bit to indicate if a page 

exists 

 PPN (physical page number) 

for a memory-resident page 

 DPN (disk page number) for 

a page on the disk 

 Status bits for protection 

and usage 

 OS sets the Page Table Base 

Register whenever active 

user process changes 

 

VPN Offset 
Virtual address from 
CPU Execute Stage 

PT Base Register 

VPN 

Data word 

Data Pages 

Offset 

PPN 
PPN 

DPN 
PPN 

PPN 
PPN 

Page Table 

DPN 

PPN 

DPN 
DPN 

DPN 
PPN 

Supervisor Accessible 
Control Register inside CPU 



With 32-bit addresses, 4-KB pages & 4-byte PTEs: 

   220 PTEs, i.e, 4 MB page table per user 

  4 GB of swap needed to back up full virtual address 

   space 

Larger pages? 

 Internal fragmentation (Not all memory in page is used) 

 Larger page fault penalty (more time to read from disk) 

What about 64-bit virtual address space??? 

 Even 1MB pages would require 244  8-byte PTEs (35 TB!) 

                          What is the “saving grace” ?  
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• Every instruction and data access needs address  
  translation and protection checks 
 

A good VM design needs to be fast (~ one cycle) and 
space efficient 

Physical Address 

Virtual Address 

Address 
Translation 

Virtual Page No. (VPN) offset 

Physical Page No. (PPN) offset 

Exception? 

Kernel/User Mode 

Read/Write 
Protection 
Check 
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Address translation is very expensive! 
In a two-level page table, each reference becomes several 
memory accesses 

 

Solution: Cache translations in TLB 
  TLB hit  Single-Cycle Translation 

       TLB miss  Page-Table Walk to refill  

VPN          offset 

V  R   W D      tag                  PPN 

physical address PPN      offset 

virtual address 

hit? 

(VPN = virtual page number) 

(PPN = physical page number) 



 Typically 32-128 entries, usually fully associative 

 Each entry maps a large page, hence less spatial locality across 

pages  more likely that two entries conflict 

 Sometimes larger TLBs (256-512 entries) are 4-8 way set-

associative 

 Larger systems sometimes have multi-level (L1 and L2) TLBs 

 Random or FIFO replacement policy 

 No process information in TLB? 

 TLB Reach: Size of largest virtual address space that can be 

simultaneously mapped by TLB 

 

Example: 64 TLB entries, 4KB pages, one page per entry 

 

TLB Reach = _____________________________________________? 
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64 entries * 4 KB = 256 KB (if contiguous) 



Software (MIPS, Alpha) 

 TLB miss causes an exception and the operating system 

walks the page tables and reloads TLB. A privileged 

“untranslated”  addressing mode used for walk. 

Hardware (SPARC v8, x86, PowerPC, RISC-V) 

A memory management unit (MMU) walks the page tables 

and reloads the TLB. 

 If a missing (data or PT) page is encountered during the TLB 

reloading, MMU gives up and signals a Page Fault exception 

for the original instruction. 
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31              11            0 

Virtual Address Index 1         Index 2            Index 3              Offset 
31                      23                       17                  11                0 
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Physical Address PPN                   Offset 

MMU does this table walk in hardware on a TLB miss 



 Assumes page tables held in untranslated physical 

memory 28 
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 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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