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= Compulsory, Capacity, Conflict

= Write policies
= Write back, write-through, write-allocate, no write allocate

= Multi-level cache hierarchies reduce miss
penalty

= 3 levels common in modern systems (some have 4!)
= Can change design tradeoffs of L1 cache if known to have L2

= Prefetching: retrieve memory data before CPU

request
= Prefetching can waste bandwidth and cause cache pollution
= Software vs hardware prefetching

= Software memory hierarchy optimizations
= Loop interchange, loop fusion, cache tiling
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= In a bare machine, the only kind of address is a physical

address
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= Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/0O devices)

= Addresses in a program depended upon where the
program was to be loaded in memory

= But it was more convenient for programmers to write
location-independent subroutines

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines and
callers when building a program memory image




DYNAMIC ADDRESS |
< In e achi ) was_slow and eac ransfer
TRA&%%EEZ%?EEI 3 L/er)md I/0 of 2 or

more programs were overlapped, how?

O0multiprogramming with DMA 1/0 devices,
interrupts

>
L -

= Location-independent programs g
= Programming and storage management ease O

0 need for a base register =

- Protection S
= Independent programs should not affect each other Program 2| Q
inadvertently i

0 need for a bound register

= Multiprogramming drives requirement for
resident supervisor software to manage context
switches between multiple programs

OS




SIMPLE BASE AND BOUND
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Base and bounds registers are visible/accessible only when
processor is running in the supervisor mode
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What is an advantage of this separation?

Main Memory
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Bounds Violation?
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Main Memory (DRAM)

Can fold addition of base register into (register+immediate)
address calculation using a carry-save adder (sums three
numbers with only a few gate delays more than adding two
numbers)
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Users4 &5 Users2 &5 free
oS arrive 0S leave
Space >
user 1 | user 1
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user 3 &m\ user 3 m user 3

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.
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Page Number Offset

maddress can be split into:

e A Page Table contains the physical address at the start of each

page
1

0 0 0
T 1 Physical
- 5 emory
3 3 5 3

Address Space Page Table

of User-1 of User-1 2

Page tables make it possible to store the pages of a
program non-contiguously.

e



FRIVATE ADDREDS
SPACE PER USER

User 1

Page Table

User 2 _>

o .

e Each user has a page table
e Page table contains an entry for each user page

Page Table

Page Table

W////




WHERE SHOULD PAGE
L SR SRR e S of

of users, ...
= Too large to keep in registers

= Idea: Keep PTs 1n the main memory

= needs one reference to retrieve the page base
address and another to access the data word

= doubles the number of memory references!

)
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User 1 Virtual
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A PROBLEM IN THE EARLY

acwere many applications
vhasddata could not fit in the

main memory, e.g., payroll

= Paged memory system reduced
fragmentation but still required the

whole program to be resident in the
main memory




OVEREAYS

Method 1: programmer keeps track of
addresses in the main memory and
initiates an I/0 transfer when required

= Difficult, error-prone!

Method 2: automatic initiation of 1/0

transfers by software address translation Central Store
= Brooker’s interpretive coding, .
Ferranti Mercury
1960 1956

= Inefficient!

Not just an ancient black art, e.qg., IBM Cell microprocessor using in
Playstation-3 has explicitly managed local store!

G



DEMAND PAGING IN ATLAS
(1 9G:):scony

storage is brought into the
primary storage whenever it is
(implicitly) demanded by the
processor.”

Tom Kilburn Primary
32 Pages
512 words/page
Primary memory as a cache
for secondary memory Secondary
Central (Drum)
User sees 32 x 6 x 512 words Memory 32x6 pages

of storage



HARDWARE ORGANIZATION
O e 'A - system code
ddrdse Y (not swapped)
. ggtci;zzs — :- system data
0 PARs (not swapped)

48-bit words
512-word pages

8 Tape decks
88 sec/word

1 Page Address

Register (PAR) per
page frame

31
<effective PN, status>

Compare the effective page address against all 32 PARs
match —> normal access
no match = page fault
save the state of the partially executed instruction



ATLAS DEMAND PAGING
SCHEME

On a page fault:

= [Input transfer into a free page is initiated

= The Page Address Register (PAR) is updated

= If no free page is left, a page is selected to be replaced (based on usage)

= The replaced page is written on the drum
= to minimize drum latency effect, the first empty page on the drum was selected

= The page table is updated to point to the new location of the page on the
drum

o



exists

= PPN (physical page number)
for a memory-resident page

= DPN (disk page number) for

a page on the disk

= Status bits for protection

and usage

OS sets the Page Table Base
Register whenever active

UuSer process changes

= A bit to indicate if a page

DPN

00000000

PPN

PT Base Register

>/ PPN

Supervisor Accessible

Control Register inside CPU

Data Pages ﬂ

VPN

Offset

Virtual address from
CPU Execute Stage

s



SIZE OF LINEAR PAGE TABLE

= With 32-bit addresses, 4-KB pages & 4-byte PTEs:

= 220 PTEs, i.e, 4 MB page table per user

= 4 GB of swap needed to back up full virtual address
space

=Larger pages?
= Internal fragmentation (Not all memory in page is used)
= Larger page fault penalty (more time to read from disk)

 What about 64-bit virtual address space???
= Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace” ?
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TABLES IN PHYSICAL
MEMORY e

Level 1 PT
User 1

Level 1 PT
User 2

7V VU

Level 2
User 2 | |




ADDRESS 1| KANSLATION
& PROTECTION Virtual Address

Virtual Page No. (VPN) offset
Kernel/User Mode
Read/Write p !
—_ rotection Address
Check Translation
Exception? |
Physical Page No. (PPN) offset

Physical Address
e Every instruction and data access needs address

translation and protection checks

A good VM design needs to be fast (~ one cycle) and

space efficient



LOOKASIDE BUFFERS
(Wélklsgv?nslation is very expensive!
n a twWo-level page table, each reference becomes several
memory accesses

Solution: Cache translations in TLB

TLB hit = Single-Cycle Translation
TLB miss = Page-Table Walk to refill

virtual address VPN offset
]

V R [WD]| tag PPN (VPN = virtual page number)

(PPN = physical page number)

1 | 1

hit? physical address PPN  offsdt

2)



TLB DESIGNS

= Typically 32-128 entries, usually fully associative

= Each entry maps a large page, hence less spatial locality across
pages =» more likely that two entries conflict

= Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

= Larger systems sometimes have multi-level (L1 and L2) TLBs

= Random or FIFO replacement policy

- No process information in TLB 7

= TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry
64 entries * 4 KB = 256 KB (if contiguous)

TLB Reach = ?

)



HANDLING A TLB MISS

«Software (MIPS, Alpha)

= TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk.

=Hardware (SPARC v8, x86, PowerPC, RISC-V)

= A memory management unit (MMU) walks the page tables
and reloads the TLB.

= I[f a missing (data or PT) page is encountered during the TLB
reloading, MMU gives up and signals a Page Fault exception
for the original instruction.
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MMU does this table walk in hardware on a TLB miss
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MEMORY MACHINE

(HAagepaWXRE PAGE-TABLE WALK) Page Fault?

. . . ? . . .
Protection violation: Protection violation?

Virtual vsical Virtual
Address Physica Address Physical
\' Address & Address
Inst. ‘/ Inst. Decode L Data Data
TLB Cache TLB Cache
Miss? | | Miss? | 1
- Table Walker
- Physical
Physical * Memory Controller : Y
Address Address

Ph{sical Address

Main Memory (DRAM)

= Assumes page tables held in untranslated physical
memory

)



ADDRESS [RANSLATION:

PUTTING IT ALL TOGETHAR

B hardware
] hardware or software

] software

& memory

deniM

Page Fault Update TLB Protection Physical

(OS loads page) SRR Fault Address
l (to cache)

Where? SEGFAULT
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