

3 C’s of cache misses

 Compulsory, Capacity, Conflict

Write policies

 Write back, write-through, write-allocate, no write allocate

Multi-level cache hierarchies reduce miss

penalty

 3 levels common in modern systems (some have 4!)

 Can change design tradeoffs of L1 cache if known to have L2

Prefetching: retrieve memory data before CPU

request

 Prefetching can waste bandwidth and cause cache pollution

 Software vs hardware prefetching

Software memory hierarchy optimizations

 Loop interchange, loop fusion, cache tiling

2

 In a bare machine, the only kind of address is a physical

address

3

PC
Inst.
Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

 Only one program ran at a time, with unrestricted

access to entire machine (RAM + I/O devices)

 Addresses in a program depended upon where the

program was to be loaded in memory

 But it was more convenient for programmers to write

location-independent subroutines

4

EDSAC, early 50’s

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines and
callers when building a program memory image

 Motivation

 In early machines, I/O was slow and each I/O transfer

involved the CPU (programmed I/O)

 Higher throughput possible if CPU and I/O of 2 or

more programs were overlapped, how?

multiprogramming with DMA I/O devices,

interrupts

 Location-independent programs

 Programming and storage management ease

 need for a base register

 Protection

 Independent programs should not affect each other

inadvertently

 need for a bound register

 Multiprogramming drives requirement for

resident supervisor software to manage context

switches between multiple programs

5

P
h

ys
ic

al
 M

em
o

ry

Program 1

Program 2

OS

6

Load X

Program
Address
Space

Bound
Register

Bounds
Violation?

P
h

ys
ic

al
 M

em
o

ry

Current
Segment

Base
Register

+

Physical
Address Logical

Address

Base and bounds registers are visible/accessible only when
processor is running in the supervisor mode

Base Physical Address

Segment Length

≥

7

Physical
Address

Physical
Address

Load X

Program
Address
Space

M
ai

n
 M

em
o

ry

Data
Segme
nt

Data Bound
Register

Mem. Address
Register

Data Base
Register +

Bounds
Violation?

Program Bound
Register

Program Counter

Program Base
Register +

Program
Segment

Logical
Address

Logical
Address

What is an advantage of this separation?

(Scheme used on all Cray vector supercomputers prior to X1, 2002)

≥

≥
Bounds
Violation?

Can fold addition of base register into (register+immediate)
address calculation using a carry-save adder (sums three
numbers with only a few gate delays more than adding two
numbers) 8

PC
Inst.
Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

+

Logical
Address

Bounds Violation?

Physical
Address

Program
Bound Register

Program Base
Register

+

Logical
Address

Bounds Violation?

≥ ≥

9

 As users come and go, the storage is “fragmented”.
 Therefore, at some stage programs have to be moved
 around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 4 & 5
arrive

Users 2 & 5
leave OS

Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

 Processor-generated address can be split into:

10

Page tables make it possible to store the pages of a
program non-contiguously.

0

1

2

3

0

1

2
3

Address Space
of User-1

Page Table
of User-1

1

0

2

3

• A Page Table contains the physical address at the start of each
page

Physical
Memory

Page Number Offset

11

• Each user has a page table
• Page table contains an entry for each user page

VA1 User 1

Page Table

VA1 User 2

Page Table

VA1 User 3

Page Table

P
h

ys
ic

al
 M

em
o

ry

free

OS
pages

 Space required by the page tables (PT) is
proportional to the address space, number of
of users, ...

Too large to keep in registers

 Idea: Keep PTs in the main memory
 needs one reference to retrieve the page base

address and another to access the data word

  doubles the number of memory references!

12

13

VA1

User 1 Virtual
Address Space

User 2 Virtual
Address Space

PT User
1

PT User
2

VA1

P
h

ys
ic

al
 M

em
o

ry

There were many applications

whose data could not fit in the

main memory, e.g., payroll

Paged memory system reduced

fragmentation but still required the

whole program to be resident in the

main memory

14

 Assume an instruction can address all the

storage on the drum

 Method 1: programmer keeps track of

addresses in the main memory and

initiates an I/O transfer when required

 Difficult, error-prone!

 Method 2: automatic initiation of I/O

transfers by software address translation

 Brooker’s interpretive coding,

1960

 Inefficient!

15

Ferranti Mercury
1956

40k bits
main

640k bits
drum

Central Store

Not just an ancient black art, e.g., IBM Cell microprocessor using in
Playstation-3 has explicitly managed local store!

16

Secondary
(Drum)
32x6 pages

Primary
32 Pages
512 words/page

Central
Memory User sees 32 x 6 x 512 words

of storage

“A page from secondary
storage is brought into the
primary storage whenever it is
(implicitly) demanded by the
processor.”
 Tom Kilburn

Primary memory as a cache
for secondary memory

17

Initial
Address
Decode

16 ROM pages
0.4-1 sec

2 subsidiary pages
 1.4 sec

Main
 32 pages
 1.4 sec

Drum (4)
192 pages

8 Tape decks
88 sec/word

48-bit words
512-word pages

1 Page Address
Register (PAR) per
page frame

Compare the effective page address against all 32 PARs
 match normal access
 no match page fault
 save the state of the partially executed instruction

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>

On a page fault:

 Input transfer into a free page is initiated

 The Page Address Register (PAR) is updated

 If no free page is left, a page is selected to be replaced (based on usage)

 The replaced page is written on the drum

 to minimize drum latency effect, the first empty page on the drum was selected

 The page table is updated to point to the new location of the page on the

drum

18

19

 Page Table Entry (PTE)

contains:

 A bit to indicate if a page

exists

 PPN (physical page number)

for a memory-resident page

 DPN (disk page number) for

a page on the disk

 Status bits for protection

and usage

 OS sets the Page Table Base

Register whenever active

user process changes

VPN Offset
Virtual address from
CPU Execute Stage

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

Supervisor Accessible
Control Register inside CPU

With 32-bit addresses, 4-KB pages & 4-byte PTEs:

 220 PTEs, i.e, 4 MB page table per user

 4 GB of swap needed to back up full virtual address

 space

Larger pages?

 Internal fragmentation (Not all memory in page is used)

 Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???

 Even 1MB pages would require 244 8-byte PTEs (35 TB!)

 What is the “saving grace” ?

20

21

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address from CPU

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

P
h

ys
ic

al
 M

em
o

ry

22

VA1

User 1

User1/VA1

User2/VA1

Level 1 PT
User 1

Level 1 PT
User 2

VA1

User 2

Level 2 PT
User 2

Virtual
Address
Spaces

Physical
Memory

23

• Every instruction and data access needs address
 translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Exception?

Kernel/User Mode

Read/Write
Protection
Check

24

Address translation is very expensive!
In a two-level page table, each reference becomes several
memory accesses

Solution: Cache translations in TLB
 TLB hit Single-Cycle Translation

 TLB miss Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

 Typically 32-128 entries, usually fully associative

 Each entry maps a large page, hence less spatial locality across

pages  more likely that two entries conflict

 Sometimes larger TLBs (256-512 entries) are 4-8 way set-

associative

 Larger systems sometimes have multi-level (L1 and L2) TLBs

 Random or FIFO replacement policy

 No process information in TLB?

 TLB Reach: Size of largest virtual address space that can be

simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = ___?

25

64 entries * 4 KB = 256 KB (if contiguous)

Software (MIPS, Alpha)

 TLB miss causes an exception and the operating system

walks the page tables and reloads TLB. A privileged

“untranslated” addressing mode used for walk.

Hardware (SPARC v8, x86, PowerPC, RISC-V)

A memory management unit (MMU) walks the page tables

and reloads the TLB.

 If a missing (data or PT) page is encountered during the TLB

reloading, MMU gives up and signals a Page Fault exception

for the original instruction.

26

27

31 11 0

Virtual Address Index 1 Index 2 Index 3 Offset
31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP

PTP

PTE

Context Table

L1 Table

L2 Table

L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

 Assumes page tables held in untranslated physical

memory 28

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W +

Page Fault?
Protection violation?

Page Fault?
Protection violation?

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

29

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

 the page is
memory memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT Where?

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

30

