ARCHITECTURE OF
COMPUTER SYSTEMS
LECTURE 8
ADDRESS

LAST TIME IN
3k Gr dabdfRobissés

= Compulsory, Capacity, Conflict

= Write policies
= Write back, write-through, write-allocate, no write allocate

= Multi-level cache hierarchies reduce miss
penalty

= 3 levels common in modern systems (some have 4!)
= Can change design tradeoffs of L1 cache if known to have L2

= Prefetching: retrieve memory data before CPU

request
= Prefetching can waste bandwidth and cause cache pollution
= Software vs hardware prefetching

= Software memory hierarchy optimizations
= Loop interchange, loop fusion, cache tiling

Fico

Address | nst.

v

Decode

Physical
Address

BAi

Physical
Address

v

Memory Controller

v

Data
Cache

Ph{sical Address

y 3

Main Memory (DRAM)

Physical
Address

= In a bare machine, the only kind of address is a physical

address

AB&5@Id) ¥E ADDRESSES

= Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/0O devices)

= Addresses in a program depended upon where the
program was to be loaded in memory

= But it was more convenient for programmers to write
location-independent subroutines

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines and
callers when building a program memory image

DYNAMIC ADDRESS |
< In e achi) was_slow and eac ransfer
TRA&%%EEZ%?EEI 3 L/er)md I/0 of 2 or

more programs were overlapped, how?

O0multiprogramming with DMA 1/0 devices,
interrupts

>
L -

= Location-independent programs g
= Programming and storage management ease O

0 need for a base register =

- Protection S
= Independent programs should not affect each other Program 2| Q
inadvertently i

0 need for a bound register

= Multiprogramming drives requirement for
resident supervisor software to manage context
switches between multiple programs

OS

SIMPLE BASE AND BOUND

Segment Length

Ik @_> Bounds
Violation?

Physical
Address

Logical
Address

Load X —>

Physical Memory

Base Physical Address

Program
Address
Space

Base and bounds registers are visible/accessible only when
processor is running in the supervisor mode

QEFARALL ARIADS TUR
PRGHerRAMy RAeNADrEdArd A 2002

....................... : ounds
Mem. Address __|Logical Ly
Load X Register Address
: Physical
Address
....................... R
Program Bounds
Address - Violation?
Space Program Counter Logical >
Address
Physical
Address

What is an advantage of this separation?

Main Memory

DAOSE AIND DUUND

A\ C I:!:ULMM]::; "
= .

Bounds Violation?

Logical
Address

Logical
Address

Inst. Data

Cache Decode Cache
Physical A Physical A
Address Address

Ihysical Physical
ddress Memory Controller <—Address

Physical Address

Main Memory (DRAM)

Can fold addition of base register into (register+immediate)
address calculation using a carry-save adder (sums three
numbers with only a few gate delays more than adding two
numbers)

IMIEIVIUR
FRAGMENTATION

Users4 &5 Users2 &5 free
oS arrive 0S leave
Space >
user 1 | user 1
wer2 O 2
QAR user 4

user 3 &m\ user 3 m user 3

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

PAGE EMUKY
SYSTEN

Page Number Offset

maddress can be split into:

e A Page Table contains the physical address at the start of each

page
1

0 0 0
T 1 Physical
- 5 emory
3 3 5 3

Address Space Page Table

of User-1 of User-1 2

Page tables make it possible to store the pages of a
program non-contiguously.

e

FRIVATE ADDREDS
SPACE PER USER

User 1

Page Table

User 2 _>

o .

e Each user has a page table
e Page table contains an entry for each user page

Page Table

Page Table

W////

WHERE SHOULD PAGE
L SR SRR e S of

of users, ...
= Too large to keep in registers

= Idea: Keep PTs 1n the main memory

= needs one reference to retrieve the page base
address and another to access the data word

= doubles the number of memory references!

)

FAGLE 1AbLES IN

PHYSICAL MEMORY

User 1 Virtual
Address Space

7
_
.

User 2 Virtual
Address Space

)
%

Physical Memory

A PROBLEM IN THE EARLY

acwere many applications
vhasddata could not fit in the

main memory, e.g., payroll

= Paged memory system reduced
fragmentation but still required the

whole program to be resident in the
main memory

OVEREAYS

Method 1: programmer keeps track of
addresses in the main memory and
initiates an I/0 transfer when required

= Difficult, error-prone!

Method 2: automatic initiation of 1/0

transfers by software address translation Central Store
= Brooker’s interpretive coding, .
Ferranti Mercury
1960 1956

= Inefficient!

Not just an ancient black art, e.qg., IBM Cell microprocessor using in
Playstation-3 has explicitly managed local store!

G

DEMAND PAGING IN ATLAS
(1 9G:):scony

storage is brought into the
primary storage whenever it is
(implicitly) demanded by the
processor.”

Tom Kilburn Primary
32 Pages
512 words/page
Primary memory as a cache
for secondary memory Secondary
Central (Drum)
User sees 32 x 6 x 512 words Memory 32x6 pages

of storage

HARDWARE ORGANIZATION
O e 'A - system code
ddrdse Y (not swapped)
. ggtci;zzs — :- system data
0 PARs (not swapped)

48-bit words
512-word pages

8 Tape decks
88 sec/word

1 Page Address

Register (PAR) per
page frame

31
<effective PN, status>

Compare the effective page address against all 32 PARs
match —> normal access
no match = page fault
save the state of the partially executed instruction

ATLAS DEMAND PAGING
SCHEME

On a page fault:

= [Input transfer into a free page is initiated

= The Page Address Register (PAR) is updated

= If no free page is left, a page is selected to be replaced (based on usage)

= The replaced page is written on the drum
= to minimize drum latency effect, the first empty page on the drum was selected

= The page table is updated to point to the new location of the page on the
drum

o

exists

= PPN (physical page number)
for a memory-resident page

= DPN (disk page number) for

a page on the disk

= Status bits for protection

and usage

OS sets the Page Table Base
Register whenever active

UuSer process changes

= A bit to indicate if a page

DPN

00000000

PPN

PT Base Register

>/ PPN

Supervisor Accessible

Control Register inside CPU

Data Pages ﬂ

VPN

Offset

Virtual address from
CPU Execute Stage

s

SIZE OF LINEAR PAGE TABLE

= With 32-bit addresses, 4-KB pages & 4-byte PTEs:

= 220 PTEs, i.e, 4 MB page table per user

= 4 GB of swap needed to back up full virtual address
space

=Larger pages?
= Internal fragmentation (Not all memory in page is used)
= Larger page fault penalty (more time to read from disk)

 What about 64-bit virtual address space???
= Even 1MB pages would require 244 8-byte PTEs (35 TB!)

What is the “saving grace” ?

10-6t 10'bit

L1 index L2 index

Root of the Current

Page Table
pl
\
(Processor el 1
Register) pago Table

page in primary memory
page in secondary memory

PTE of a nonexistent page

Level 2
Page Tables

Physical Memory

=)

TABLES IN PHYSICAL
MEMORY e

Level 1 PT
User 1

Level 1 PT
User 2

7V VU

Level 2
User 2 | |

ADDRESS 1| KANSLATION
& PROTECTION Virtual Address

Virtual Page No. (VPN) offset
Kernel/User Mode
Read/Write p !
—_ rotection Address
Check Translation
Exception? |
Physical Page No. (PPN) offset

Physical Address
e Every instruction and data access needs address

translation and protection checks

A good VM design needs to be fast (~ one cycle) and

space efficient

LOOKASIDE BUFFERS
(Wélklsgv?nslation is very expensive!
n a twWo-level page table, each reference becomes several
memory accesses

Solution: Cache translations in TLB

TLB hit = Single-Cycle Translation
TLB miss = Page-Table Walk to refill

virtual address VPN offset
]

V R [WD]| tag PPN (VPN = virtual page number)

(PPN = physical page number)

1 | 1

hit? physical address PPN offsdt

2)

TLB DESIGNS

= Typically 32-128 entries, usually fully associative

= Each entry maps a large page, hence less spatial locality across
pages =» more likely that two entries conflict

= Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

= Larger systems sometimes have multi-level (L1 and L2) TLBs

= Random or FIFO replacement policy

- No process information in TLB 7

= TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry
64 entries * 4 KB = 256 KB (if contiguous)

TLB Reach = ?

)

HANDLING A TLB MISS

«Software (MIPS, Alpha)

= TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk.

=Hardware (SPARC v8, x86, PowerPC, RISC-V)

= A memory management unit (MMU) walks the page tables
and reloads the TLB.

= I[f a missing (data or PT) page is encountered during the TLB
reloading, MMU gives up and signals a Page Fault exception
for the original instruction.

Index 2

HIER AR

Index 1

I‘ U %K@"ﬁte D V
Table >
Register L1 Table
»|root ptr >
Context
Register L2 Table
"L_PTP ” L3 Table
"l PTP >
*[__PTE
31 11 0
Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

)

FAUGL-DAOLIJ VINI UALS

MEMORY MACHINE

(HAagepaWXRE PAGE-TABLE WALK) Page Fault?

. . . ? . . .
Protection violation: Protection violation?

Virtual vsical Virtual
Address Physica Address Physical
\' Address & Address
Inst. ‘/ Inst. Decode L Data Data
TLB Cache TLB Cache
Miss? | | Miss? | 1
- Table Walker
- Physical
Physical * Memory Controller : Y
Address Address

Ph{sical Address

Main Memory (DRAM)

= Assumes page tables held in untranslated physical
memory

)

ADDRESS [RANSLATION:

PUTTING IT ALL TOGETHAR

B hardware
] hardware or software

] software

& memory

deniM

Page Fault Update TLB Protection Physical

(OS loads page) SRR Fault Address
l (to cache)

Where? SEGFAULT

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

