ARCHITECTURE OF
COMPUTER SYSTEMS
LECTURE 7 - MEMORE

HIERARCHY-II

LAS Fred kM dbtad Nooo G or bl ey 6

storage in use tod ay

= Holds values on small capacitors, need refreshing (hence
dynamic)

= Slow multi-step access: precharge, read row, read column

= Static RAM (SRAM) is faster but more expensive
= Used to build on-chip memory for caches

= Cache holds small set of values in fast memory (SRAM)
close to processor
= Need to develop search scheme to find values in cache, and

replacement policy to make space for newly accessed
locations

= Caches exploit two forms of predictability in memory
reference streams

= Temporal locality, same location likely to be accessed again
soon

= Spatial locality, neighboring location likely to be accessed
soon

0

LINE SIZE ANLD SFA1LIAL
LHQ QALJEI;xen the cache and memory

Tag WordO Word1 Word2 Word3 4 word line, b=2
Split CPU Line Address Offset
address
— VN J
—~" Y,
32-b bits b bits

2° = line size a.k.a line size (in bytes)

Larger line size has distinct hardware advantages
e |less tag overhead
e exploit fast burst transfers from DRAM
e exploit fast burst transfers over wide busses

What are the disadvantages of increasing line size?

Data

HIT

Data Word or Byte

L-VWWAY DL~

S Data V,Tag Data

: "\ = Data
Word
:} or Byte

HIT

CAC_

F'ULLLI AU IMLLY L

E Data

l .
9

EUD 7 ? o N
t V T
——/
HIT
? ? @ N
£ v T Data
2 Word
’@‘—_\ or
b — or Byte

REFLACEMEN T
RQachIcgchache, which line from a set should be

evicted when the set becomes full?

® Random

e Least-Recently Used (LRU)

e LRU cache state must be updated on every access
e True implementation only feasible for small sets (2-way)
e Pseudo-LRU binary tree often used for 4-8 way

e First-In, First-Out (FIFO) a.k.a. Round-Robin
e Used in highly associative caches

e Not-Most-Recently Used (NMRU)

e FIFO with exception for most-recently used line or lines
This is a second-order effect. Why?

Replacement only happens on misses

@

U CALTL

INTERACTION

(5-STAGE PIPELINE)

0x4 ﬂ

| m

M
A —
N vV we
bubble Decode, — v4+—] addr
u . N i
J__D—'I—' Register i E;'garyr data l—s
cf—laddr inst D Fetch — — Cache
1 hits o wdata MY [
PCen Primary N Al T
Instruction MD1 MD2
Caene; Stall entire
l CPU on data
| cache mi
To Memory Control // i‘s\

Cache Refill Data from Lower Levels of
Memory Hierarchy

0

IMPROVING CACHE
PE RECSR NAKEE e (AMAT) -

Miss penalty
To improve performance:
e reduce the hit time
e reduce the miss rate
e reduce the miss penalty
What is best cache design for 5-stage pipeline?

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]

0

CAUSES U LALNE
MISSES THE 3 C'S

Compulsory: first reference to a line (a.k.a.
cold start misses)

= misses that would occur even with infinite cache

Capacity: cache is too small to hold all data
needed by the program

= misses that would occur even under perfect
replacement policy

Conflict: misses that occur because of
collisions due to line-placement strategy

= misses that would not occur with ideal full
assoclativity

EFFECT OF CACHE
PARE@ZE?R§ ()flligmisses

= Higher associativity
+ reduces conflict misses
- may increase hit time

= Larger line size
+ reduces compulsory and capacity (reload) misses

- increases conflict misses and miss penalty

WRITEROLICY. CHEICES

= Generally higher traffic but simpler pipeline &
cache design

= write back: write cache only, memory is written only
when the entry is evicted

= A dirty bit per line further reduces write-back
traffic

= Must handle O, 1, or 2 accesses to memory for each
load/store

= Cache miss:
= no write allocate: only write to main memory
= write allocate (aka fetch on write): fetch into cache

=Common combinations:
= write through and no write allocate
= write back with write allocate

)

WRITE

HIT <

VAN

Data Word or Byte

e

REDUCING WRILTE LT
1TIME

Problem: Writes take two cycles in memory
stage, one cycle for tag check plus one cycle
for data write if hit

Solutions:

= Design data RAM that can perform read and write in one cycle,
restore old value after tag miss

« Fully-associative (CAM Tag) caches: Word line only enabled if
hit

= Pipelined writes: Hold write data for store in single buffer ahead
of cache, write cache data during next store’s tag check

=)

PIPE]

[NT ¢ jﬂﬁjﬁf WP‘JN RIT
S

tore Data

ES

DDelayed Write Addr.

|>Delayed Write Data

v Load/Store

Y

'S |

1 Data

!

S
L

X\l

|

Load Data to CPU

Data from a store hit written

into data portion of cache

during tag access of subsequent store

G

WRITE BUFFER TO RFRHCE
REA CPU I N AIJY Unified

L2 Cache
RE > Write L

/ buffer

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

Processor is not stalled on writes, and read misses can go ahead of
write to main memory

Problem: Write buffer may hold updated value of location needed
by a read miss

Simple solution: on a read miss, wait for the write buffer to go
empty

Faster solution: Check write buffer addresses against read miss
addresses, if no match, allow read miss to go ahead of writes, else,
return value in write buffer

e

OVERHEAD WITH SUB-
- E]I%b enQ;g lg §b large, 1.e., too much overhead

= Simple solution: Larger lines, but miss penalty could be large.

= Solution: Sub-block placement (aka sector cache)
= A valid bit added to units smaller than full line, called sub-blocks

= Only read a sub-block on a miss
« [fa tag matches, 1s the word in the cache?

100 1 1 b, 1
300 1 1 0 0
204 0 1 g 1

s

M Wl d Lkt Vool (e AGH ES

Solution: Increasing sizes of cache at each level

CPU [—{L1$}—{12¢ [—{DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions

o

PRESENCE OF L2
INFLUENCES L1 DESIGN

«Use smaller L1 if there is also L2
= Trade increased L1 miss rate for reduced L1 hit time
= Backup L2 reduces L1 miss penalty
= Reduces average access energy

=Use simpler write-through L1 with on-chip L2
= Write-back L2 cache absorbs write traffic, doesn’t go off-chip

= At most one L1 miss request per L1 access (no dirty victim write back)
simplifies pipeline control
= Simplifies coherence issues

= Simplifies error recovery in L1 (can use just parity bits in L1 and reload
from L2 when parity error detected on L1 read)

o

IN CLIdodi NuR(el & Xe:

= Inner cache can only hold lines also
present in outer cache

= External coherence snoop access need only
check outer cache

= Exclusive multilevel caches:

= Inner cache may hold lines not in outer
cache

= Swap lines between inner/outer caches on
miss

= Used in AMD Athlon with 64KB primary
and 256KB secondary cache

Why choose one type or the other?

ITANIUM 2 ON CHIP

C

(IN

21.6 mm

19.5mm

Level 1: 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store) single cycle latency

Level 2: 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

=)

POWER 7 ON-CHIP CACHES

32KB L1 IS/core

[[BIE:2009

256KB Unified L2S/core g2 Cache | {'L

8-cycle latency el ottt Lot 1 R et et b T T

32MB Unified Shared L3S
Embedded DRAM (eDRAM)
25-cycle latency to local
slice

[BM 6 MAINFRAME
wll > (Zch;!fsQChip, 24 chips/system)

= Qut-of-order, 3-way superscalar @ 5.2GHz

=[.1: 64KB I-$/core + 128KB D-$/core
=[.2: 1.5MB private/core (144MB total)

=[.3: 24MB shared/chip (eDRAM) (576MB
total)

«[14: 768MB shared/system (eDRAM)

PREFETCHING

= Speculate on future instruction and data accesses

and fetch them into cache(s)
= Instruction accesses easier to predict than data accesses

= Varieties of prefetching
= Hardware prefetching
= Software prefetching
= Mixed schemes

What types of misses does prefetching affect?

o

[SSUESINRREEETCHING

= Timeliness - not late and not too early

= Cache and bandwidth pollution

CPU
11l

RF

g | 1 |nstruction

<P | 1 Data

Unified L2
Cache

ol

Prefetched data

)

NARNIJVWARNLD

INSTRUCTION

XP 21064

PREFET CEIINIL

the next consecutive line (i+1)

= Requested line placed in cache, and next line in
instruction stream buffer

= [f miss in cache but hit in stream buffer, move stream
buffer line into cache and prefetch next line (i+2)

Req

CPU
11l

RF

h

Stream

line ; Buffer

L1
Instruction

he requested line (i) and

Prefetched
instruction line

Unified L2

Req Cache
line

)

HARDWARE DATA
PREFETCHING

= Prefetch-on-miss:
= Prefetch b + 1 upon missonb

= One-Block Lookahead (OBL) scheme
= Initiate prefetch for block b + 1 when block b is accessed

= Why is this different from doubling block size?
= Can extend to N-block lookahead

= Strided prefetch
= If observe sequence of accesses to line b, b+N, b+2N, then prefetch b+3N etc.

= Example: IBM Power 5 [2003] supports eight independent streams of
strided prefetch per processor, prefetching 12 lines ahead of current

dCCeSS O
e

SOFTWARE PREFETCHING

for(i=0; 1 < N; i++) {
prefetch(&af[i + 1]);
prefetch(&b[i + 1]);
SUM = SUM + a[i] * b[1];
}

SOFTWARE PREFETCHING

IS SU firilg is the biggest issue, not predictability
kM You prefetch very close to when the data is required,
you might be too late
= Prefetch too early, cause pollution
= Estimate how long it will take for the data to come
into L1, so we can set P appropriately
= Why is this hard to do?

for (i=0; i < N; i++) {
prefetch(&a[i + P]);

prefetch(&b[i + P]);
SUM = SUM + a[i] * b[i];

Must consider cost of prefetch instructions

o

COMPILER OPTIMIZATIONS

= Restructuring code affects the data access sequence
= Group data accesses together to improve spatial locality
= Re-order data accesses to improve temporal locality

= Prevent data from entering the cache
= Useful for variables that will only be accessed once before being replaced

= Needs mechanism for software to tell hardware not to cache data (“no-allocate
instruction hints or page table bits)

= Kill data that will never be used again
= Streaming data exploits spatial locality but not temporal locality

= Replace into dead cache locations

LOOR.INTERGCHANGE

for(i=0; i < M; i++) {
\ x[1][3] = 2 * x[1i][3]]~
}

.

< M; i++) {
j < N; j++) {
jl = 2 * x[i][]J];

for (1i=0; 1i
for (j=0;
x[1] [
}
}

What type of locality does this improve?

Gy

LOOP EUSION .

a[i] = b[i] * c[i];

for (i=0; i < N; i++)
d[i] = a[i] * c[i];

.

for(i=0; i < N; i++)
{

b[i] * c[i];
a[i] * c[i];

a[i]
d[i]

}

What type of locality does this improve?

)

MATRIX MULTIPLY, NAIVE
CODE =" <% 5n

r = 0;
for(k—O k < N; k++) k
r=r + y[il[k] * z[k]lI[J];
x[1][J] = &,
}
Yy k X

Not touched Old access B New access

MA I RIX MULIIFLY
=WITH CACHE TILING

for (kk=0; kk < N; kk=kk+B)
for(i=0; i < N; i++)

for (j=3jj; j < min(jj+B,N); J++) {
r = 0;

for (k=kk; k < min(kk+B,N); k++) k

r =r + y[i][k] * z[k][]]-

x[1]1[3] = x[1][]] + r;

}

y k X J

What type of locality does this improve?

(2)

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

o

