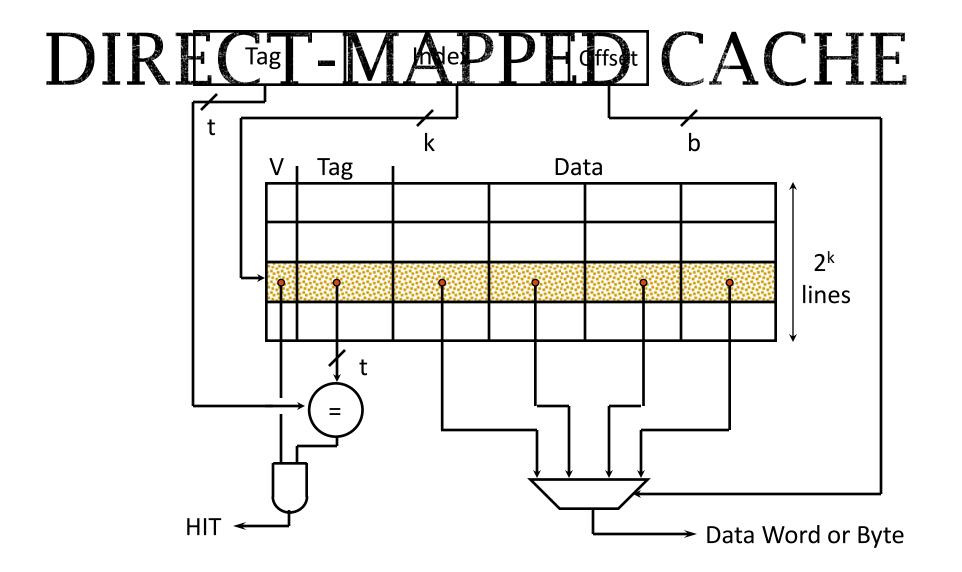

# ARCHITECTURE OF COMPUTER SYSTEMS LECTURE 7 - MEMORY HIFRARCHY-II

### LAS Tynanic RAM (DRAM) is main form of main namery 6 storage in use today

- Holds values on small capacitors, need refreshing (hence dynamic)
- Slow multi-step access: precharge, read row, read column
- Static RAM (SRAM) is faster but more expensive
  - Used to build on-chip memory for caches
- Cache holds small set of values in fast memory (SRAM) close to processor
  - Need to develop search scheme to find values in cache, and replacement policy to make space for newly accessed locations
- Caches exploit two forms of predictability in memory reference streams
  - Temporal locality, same location likely to be accessed again soon
  - Spatial locality, neighboring location likely to be accessed soon

# LINE SIZE AND SPATIAL LOCALITY Afine is unit of transfer between the cache and memory

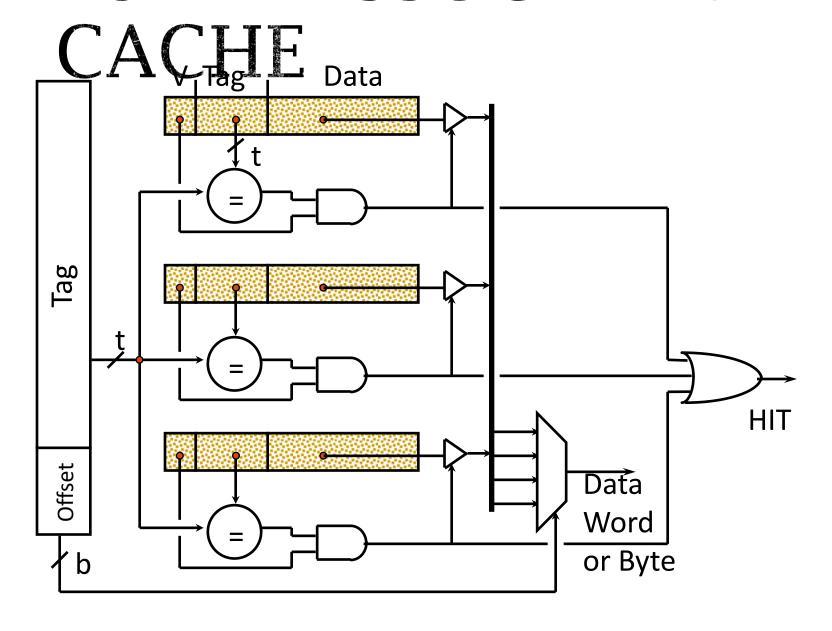



Larger line size has distinct hardware advantages

- less tag overhead
- exploit fast burst transfers from DRAM
- exploit fast burst transfers over wide busses

What are the disadvantages of increasing line size?

Fewer lines => more conflicts. Can waste bandwidth.






### Z-WAY SEI-Offset b k <sub>I</sub>Tag Tag Data Data Data Word or Byte HIT

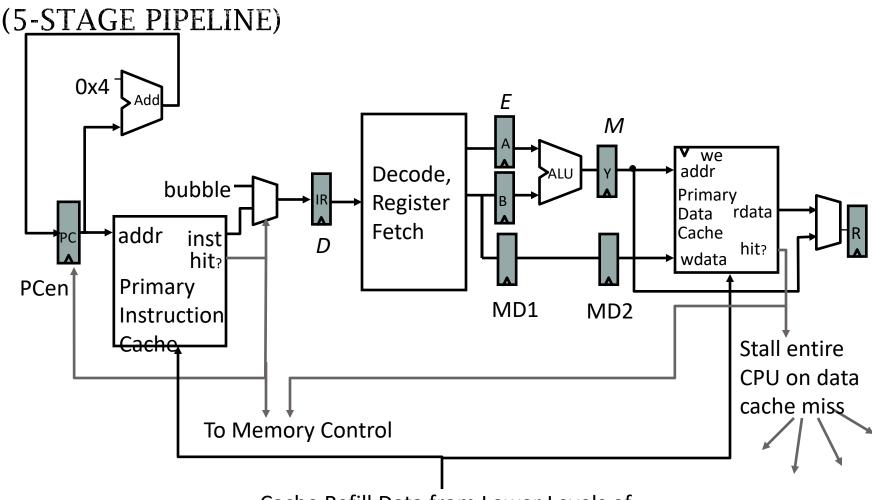


#### FULLI ASSULIATIVE





### REPLACEMENT


In an associative cache, which line from a set should be evicted when the set becomes full?

- Random
- Least-Recently Used (LRU)
  - LRU cache state must be updated on every access
  - True implementation only feasible for small sets (2-way)
  - Pseudo-LRU binary tree often used for 4-8 way
- First-In, First-Out (FIFO) a.k.a. Round-Robin
  - Used in highly associative caches
- Not-Most-Recently Used (NMRU)
  - FIFO with exception for most-recently used line or lines

This is a second-order effect. Why?

Replacement only happens on misses

# CPU-CACHE INTERACTION



Cache Refill Data from Lower Levels of Memory Hierarchy

# IMPROVING CACHE PER Average mamory access time (AMAT) = PER Average mamory access time (AMAT) = Miss penalty

#### To improve performance:

- reduce the hit time
- reduce the miss rate
- reduce the miss penalty

What is best cache design for 5-stage pipeline?

Biggest cache that doesn't increase hit time past 1 cycle (approx 8-32KB in modern technology)

[ design issues more complex with deeper pipelines and/or out-of-order superscalar processors]

### CAUSES OF CACHE MISSES: THE 3 C'S Compulsory: first reference to a line (a.k.a.

cold start misses)

misses that would occur even with infinite cache

Capacity: cache is too small to hold all data needed by the program

• misses that would occur even under perfect replacement policy

**Conflict:** misses that occur because of collisions due to line-placement strategy

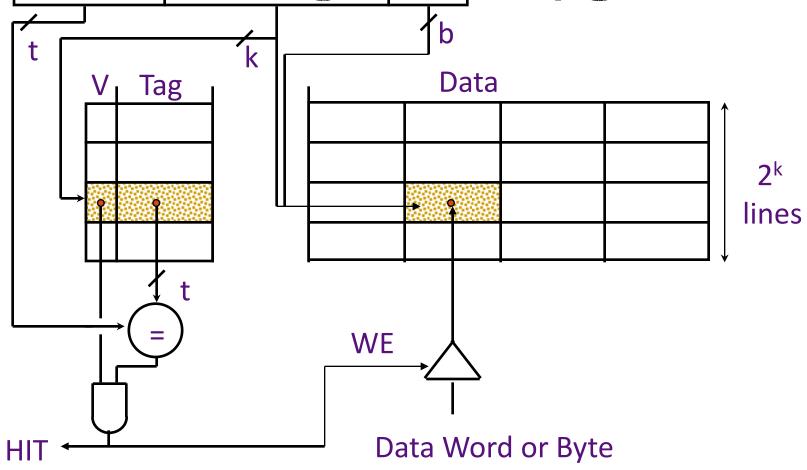
 misses that would not occur with ideal full associativity

# EFFECT OF CACHE PARAMETERS ON PERFICURES capacity and conflict misses PERFICURE MILACIA SEE E

- Higher associativity
  - + reduces conflict misses
  - may increase hit time
- Larger line size
  - + reduces compulsory and capacity (reload) misses
  - increases conflict misses and miss penalty

### WRI Fache hit I write both charles to the write through write both charles to the control of the

- Generally higher traffic but simpler pipeline & cache design
- *write back*: write cache only, memory is written only when the entry is evicted
  - A dirty bit per line further reduces write-back traffic
  - Must handle 0, 1, or 2 accesses to memory for each load/store

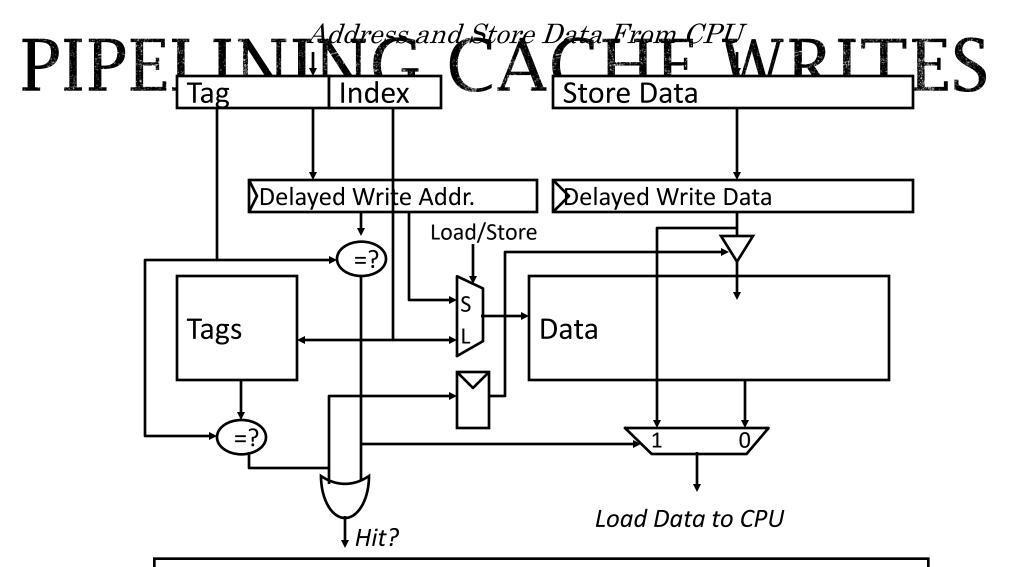

#### • Cache miss:

- *no write allocate*: only write to main memory
- write allocate (aka fetch on write): fetch into cache

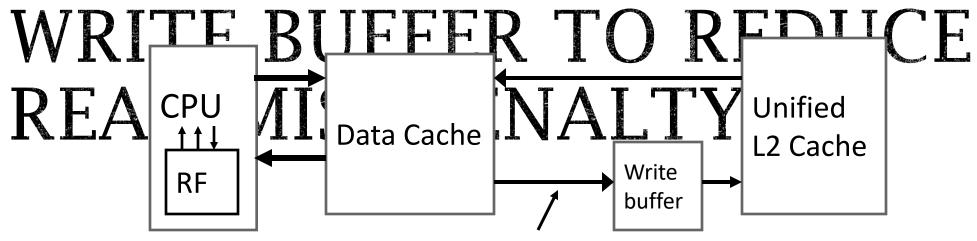
#### • Common combinations:

- write through and no write allocate
- write back with write allocate

## WRITE PERIFORMANCE




### REDUCING WRITE HIT TIME


**Problem:** Writes take two cycles in memory stage, one cycle for tag check plus one cycle for data write if hit

#### Solutions:

- Design data RAM that can perform read and write in one cycle, restore old value after tag miss
- Fully-associative (CAM Tag) caches: Word line only enabled if hit
- Pipelined writes: Hold write data for store in single buffer ahead of cache, write cache data during next store's tag check



Data from a store hit written into data portion of cache during tag access of subsequent store



Evicted dirty lines for writeback cache

OR

All writes in writethrough cache

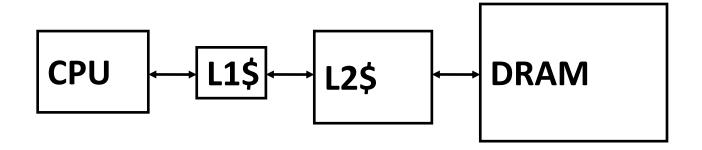
Processor is not stalled on writes, and read misses can go ahead of write to main memory

**Problem:** Write buffer may hold updated value of location needed by a read miss

**Simple solution:** on a read miss, wait for the write buffer to go empty

**Faster solution:** Check write buffer addresses against read miss addresses, if no match, allow read miss to go ahead of writes, else, return value in write buffer

### OVERHEAD WITH SUB-BLOCKS Problem: Tags are too large, i.e., too much overhead


- - Simple solution: Larger lines, but miss penalty could be large.
- Solution: Sub-block placement (aka sector cache)
  - A valid bit added to units smaller than full line, called sub-blocks
  - Only read a sub-block on a miss
  - If a tag matches, is the word in the cache?

*100* 

| 1 | 1 | 1 |   | 1 |   |
|---|---|---|---|---|---|
| 1 | 1 | C | ) | 0 | ) |
| 0 | 1 | 0 |   | 1 |   |

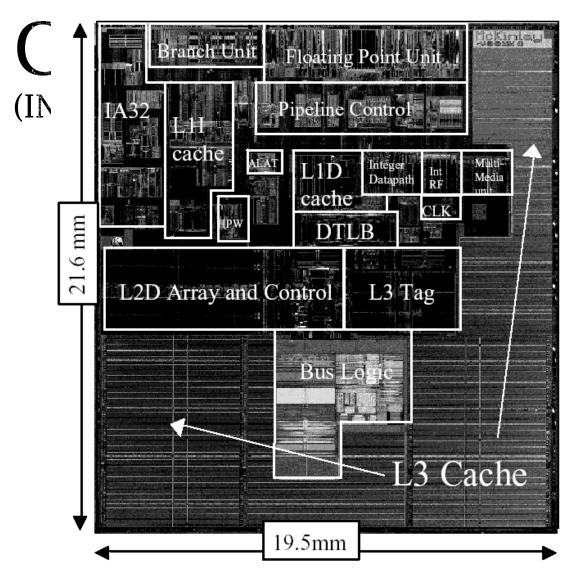
### Merdblem: Amenory amor be large and fast HES

**Solution**: Increasing sizes of cache at each level



Local miss rate = misses in cache / accesses to cache Global miss rate = misses in cache / CPU memory accesses Misses per instruction = misses in cache / number of instructions

# PRESENCE OF L2 INFLUENCES L1 DESIGN


- •Use smaller L1 if there is also L2
  - Trade increased L1 miss rate for reduced L1 hit time
  - Backup L2 reduces L1 miss penalty
  - Reduces average access energy
- Use simpler write-through L1 with on-chip L2
  - Write-back L2 cache absorbs write traffic, doesn't go off-chip
  - At most one L1 miss request per L1 access (no dirty victim write back) simplifies pipeline control
  - Simplifies coherence issues
  - Simplifies error recovery in L1 (can use just parity bits in L1 and reload from L2 when parity error detected on L1 read)

### INCIACISSIQ MultiQuel Cache:

- Inner cache can only hold lines also present in outer cache
- External coherence snoop access need only check outer cache
- *Exclusive* multilevel caches:
  - Inner cache may hold lines not in outer cache
  - Swap lines between inner/outer caches on miss
  - Used in AMD Athlon with 64KB primary and 256KB secondary cache

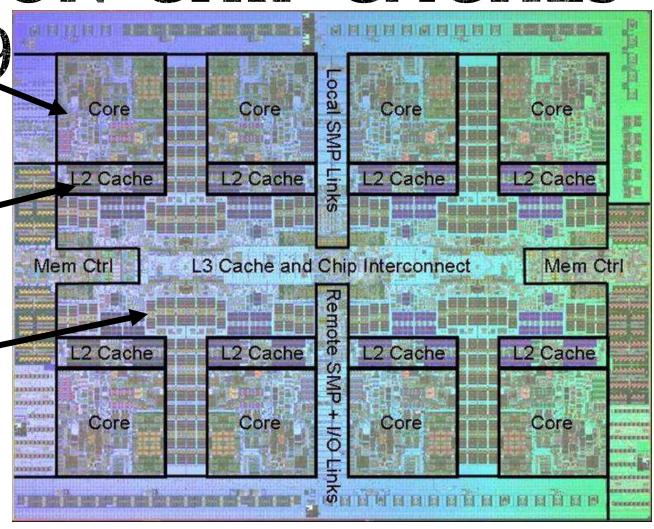
Why choose one type or the other?

### ITANIUM-2 ON-CHIP



Level 1: 16KB, 4-way s.a., 64B line, quad-port (2 load+2 store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B line, quad-port (4 load or 4 store), five cycle latency


Level 3: 3MB, 12-way s.a., 128B line, single 32B port, twelve cycle latency

OWER 7 ON-CHIP CACHES

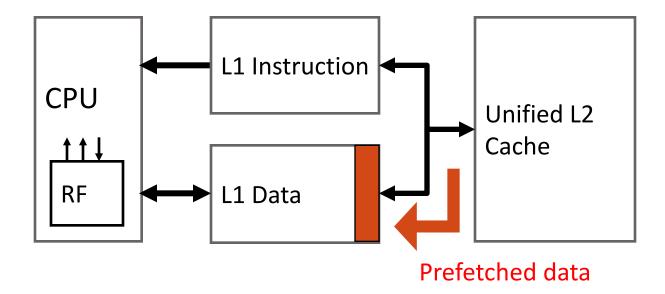
BREAT DESCRIPTION OF THE PROPERTY OF TH

256KB Unified L2\$/core 8-cycle latency

32MB Unified Shared L3\$ Embedded DRAM (eDRAM) 25-cycle latency to local slice



# IBM Z196 MAINFRAME CACHES (2019, 24 chips/system)


- Out-of-order, 3-way superscalar @ 5.2GHz
- L1: 64KB I-\$/core + 128KB D-\$/core
- L2: 1.5MB private/core (144MB total)
- L3: 24MB shared/chip (eDRAM) (576MB total)
- L4: 768MB shared/system (eDRAM)

### PREFETCHING

- Speculate on future instruction and data accesses and fetch them into cache(s)
  - Instruction accesses easier to predict than data accesses
- Varieties of prefetching
  - Hardware prefetching
  - Software prefetching
  - Mixed schemes
- What types of misses does prefetching affect?

### ISSUE SUN PREFETCHING

- Timeliness not late and not too early
- Cache and bandwidth pollution



#### HARDWAKE INSTRUCTION

Prestruction prefetch in Aloha AXP 21064
Fetch two lines on a miss; the requested line (i) and the next consecutive line (i+1)

- Requested line placed in cache, and next line in instruction stream buffer
- If miss in cache but hit in stream buffer, move stream buffer line into cache and prefetch next line (i+2)



# HARDWARE DATA PREFETCHING

- Prefetch-on-miss:
  - Prefetch b + 1 upon miss on b
- One-Block Lookahead (OBL) scheme
  - Initiate prefetch for block b + 1 when block b is accessed
  - Why is this different from doubling block size?
  - Can extend to N-block lookahead
- Strided prefetch
  - If observe sequence of accesses to line b, b+N, b+2N, then prefetch b+3N etc.
- Example: IBM Power 5 [2003] supports eight independent streams of strided prefetch per processor, prefetching 12 lines ahead of current access

### SOFTWARE PREFETCHING

```
for(i=0; i < N; i++) {
    prefetch( &a[i + 1] );
    prefetch( &b[i + 1] );
    SUM = SUM + a[i] * b[i];
}</pre>
```

### SOFTWARE PREFETCHING

ISSUMMENT IN THE STATE OF THE S

- Prefetch too early, cause pollution
- Estimate how long it will take for the data to come into L1, so we can set P appropriately
- Why is this hard to do?

```
for(i=0; i < N; i++) {
    prefetch( &a[i + P] );
    prefetch( &b[i + P] );
    SUM = SUM + a[i] * b[i];
}</pre>
```

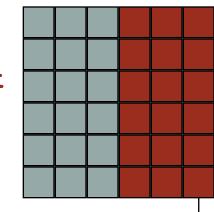
Must consider cost of prefetch instructions

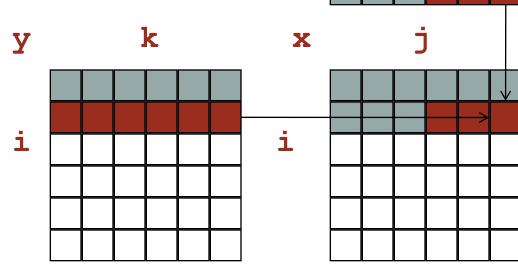
### COMPILER OPTIMIZATIONS

- Restructuring code affects the data access sequence
  - Group data accesses together to improve spatial locality
  - Re-order data accesses to improve temporal locality
- Prevent data from entering the cache
  - Useful for variables that will only be accessed once before being replaced
  - Needs mechanism for software to tell hardware not to cache data ("no-allocate" instruction hints or page table bits)
- Kill data that will never be used again
  - Streaming data exploits spatial locality but not temporal locality
  - Replace into dead cache locations

### LOOP, INTERCHANGE for (i=0; i < M; i++)x[i][j] = 2 \* x[i][j];for(i=0; i < M; i++) { for(j=0; j < N; j++) { x[i][j] = 2 \* x[i][j];

What type of locality does this improve?


### LOOP FUSION 1++) a[i] = b[i] \* c[i];for (i=0; i < N; i++)d[i] = a[i] \* c[i];for (i=0; i < N; i++)a[i] = b[i] \* c[i];d[i] = a[i] \* c[i];


What type of locality does this improve?

### MATRIX MULTIPLY, NAÏVE

```
Cortiso; i < N; i++)

for(j=0; j < N; j++) {
    r = 0;
    for(k=0; k < N; k++)
        r = r + y[i][k] * z[k][j];
    x[i][j] = r;
}
```





¬ Not touched 
¬





New access

# MATRIX MULTIPLY WITH CACHE TILING

```
for (kk=0; kk < N; kk=kk+B)
   for (i=0; i < N; i++)
       for(j=jj; j < min(jj+B,N); j++) {</pre>
          r = 0;
          for(k=kk; k < min(kk+B,N); k++)</pre>
             r = r + y[i][k] * z[k][j];
          x[i][j] = x[i][j] + r;
                                  k
                                             X
```

What type of locality does this improve?

### ACKNOWLEDGEMENTS

- These slides contain material developed and copyright by:
  - Arvind (MIT)
  - Krste Asanovic (MIT/UCB)
  - Joel Emer (Intel/MIT)
  - James Hoe (CMU)
  - John Kubiatowicz (UCB)
  - David Patterson (UCB)
- MIT material derived from course 6.823
- UCB material derived from course CS252