

 Dynamic RAM (DRAM) is main form of main memory

storage in use today

 Holds values on small capacitors, need refreshing (hence

dynamic)

 Slow multi-step access: precharge, read row, read column

 Static RAM (SRAM) is faster but more expensive

 Used to build on-chip memory for caches

 Cache holds small set of values in fast memory (SRAM)

close to processor

 Need to develop search scheme to find values in cache, and

replacement policy to make space for newly accessed

locations

 Caches exploit two forms of predictability in memory

reference streams

 Temporal locality, same location likely to be accessed again

soon

 Spatial locality, neighboring location likely to be accessed

soon

2

3

Word3 Word0 Word1 Word2

Larger line size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing line size?

Line Address

2b = line size a.k.a line size (in bytes)

Split CPU
address

b bits 32-b bits

Tag

A line is unit of transfer between the cache and memory

4 word line, b=2

Fewer lines => more conflicts. Can waste bandwidth.

Offset

 Tag Data V

 =

Offset Tag Index

 t
 k b

 t

HIT Data Word or Byte

 2k

lines

 Tag Data V

 =

Offset Tag Index

 t
 k

 b

HIT

 Tag Data V

Data

Word

or Byte

 =

 t

 Tag Data V

 =

O
ff

se
t

 T
ag

 t

 b

HIT

Data
Word
or Byte

 =

 =

 t

7

In an associative cache, which line from a set should be
evicted when the set becomes full?
• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• True implementation only feasible for small sets (2-way)
• Pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• Used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used line or lines

This is a second-order effect. Why?

Replacement only happens on misses

8

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

bubble

hit?

PCen

Decode,
Register
Fetch

wdata

R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

Y Y ALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

9

Average memory access time (AMAT) =
 Hit time + Miss rate x Miss penalty

To improve performance:

• reduce the hit time
• reduce the miss rate
• reduce the miss penalty

What is best cache design for 5-stage pipeline?

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]

Compulsory: first reference to a line (a.k.a.
cold start misses)

 misses that would occur even with infinite cache

Capacity: cache is too small to hold all data
needed by the program

 misses that would occur even under perfect
replacement policy

Conflict: misses that occur because of
collisions due to line-placement strategy

 misses that would not occur with ideal full
associativity

10

11

Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

Higher associativity
+ reduces conflict misses
- may increase hit time

Larger line size

+ reduces compulsory and capacity (reload) misses
- increases conflict misses and miss penalty

Cache hit:

 write through: write both cache & memory

 Generally higher traffic but simpler pipeline &

cache design

 write back: write cache only, memory is written only

when the entry is evicted

 A dirty bit per line further reduces write-back

traffic

 Must handle 0, 1, or 2 accesses to memory for each

load/store

Cache miss:

 no write allocate: only write to main memory

 write allocate (aka fetch on write): fetch into cache

Common combinations:

 write through and no write allocate

 write back with write allocate

12

13

 Tag Data V

 =

Offset Tag Index

 t k
 b

 t

HIT Data Word or Byte

 2k

lines

WE

Problem: Writes take two cycles in memory
stage, one cycle for tag check plus one cycle
for data write if hit

Solutions:

 Design data RAM that can perform read and write in one cycle,
restore old value after tag miss

 Fully-associative (CAM Tag) caches: Word line only enabled if
hit

 Pipelined writes: Hold write data for store in single buffer ahead
of cache, write cache data during next store’s tag check

14

15

Tags Data

Tag Index Store Data

Address and Store Data From CPU

Delayed Write Data Delayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L

S

1 0

Hit?

Data from a store hit written into data portion of cache
during tag access of subsequent store

16

Processor is not stalled on writes, and read misses can go ahead of

write to main memory

Problem: Write buffer may hold updated value of location needed

by a read miss

Simple solution: on a read miss, wait for the write buffer to go

empty

Faster solution: Check write buffer addresses against read miss

addresses, if no match, allow read miss to go ahead of writes, else,

return value in write buffer

Data Cache
Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR
All writes in writethrough cache

 Problem: Tags are too large, i.e., too much overhead

 Simple solution: Larger lines, but miss penalty could be large.

 Solution: Sub-block placement (aka sector cache)

 A valid bit added to units smaller than full line, called sub-blocks

 Only read a sub-block on a miss

 If a tag matches, is the word in the cache?

17

100

300

204

1 1 1 1

1 1 0 0

0 1 0 1

Problem: A memory cannot be large and fast

Solution: Increasing sizes of cache at each level

18

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions

Use smaller L1 if there is also L2

 Trade increased L1 miss rate for reduced L1 hit time

 Backup L2 reduces L1 miss penalty

 Reduces average access energy

Use simpler write-through L1 with on-chip L2

 Write-back L2 cache absorbs write traffic, doesn’t go off-chip

 At most one L1 miss request per L1 access (no dirty victim write back)

simplifies pipeline control

 Simplifies coherence issues

 Simplifies error recovery in L1 (can use just parity bits in L1 and reload

from L2 when parity error detected on L1 read)

19

 Inclusive multilevel cache:

 Inner cache can only hold lines also

present in outer cache

 External coherence snoop access need only

check outer cache

 Exclusive multilevel caches:

 Inner cache may hold lines not in outer

cache

 Swap lines between inner/outer caches on

miss

 Used in AMD Athlon with 64KB primary

and 256KB secondary cache

Why choose one type or the other?

20

21

Level 1: 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

22

32KB L1 I$/core
32KB L1 D$/core
3-cycle latency

256KB Unified L2$/core
8-cycle latency

32MB Unified Shared L3$
Embedded DRAM (eDRAM)
25-cycle latency to local
slice

96 cores (4 cores/chip, 24 chips/system)

 Out-of-order, 3-way superscalar @ 5.2GHz

L1: 64KB I-$/core + 128KB D-$/core

L2: 1.5MB private/core (144MB total)

L3: 24MB shared/chip (eDRAM) (576MB

total)

L4: 768MB shared/system (eDRAM)

23

Speculate on future instruction and data accesses

and fetch them into cache(s)

 Instruction accesses easier to predict than data accesses

Varieties of prefetching

 Hardware prefetching

 Software prefetching

 Mixed schemes

What types of misses does prefetching affect?

24

 Usefulness – should produce hits

 Timeliness – not late and not too early

 Cache and bandwidth pollution

25

L1 Data

L1 Instruction

Unified L2
Cache

RF

CPU

Prefetched data

Instruction prefetch in Alpha AXP 21064

 Fetch two lines on a miss; the requested line (i) and

the next consecutive line (i+1)

 Requested line placed in cache, and next line in

instruction stream buffer

 If miss in cache but hit in stream buffer, move stream

buffer line into cache and prefetch next line (i+2)

26

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction line Req

 line

Req
 line

 Prefetch-on-miss:

 Prefetch b + 1 upon miss on b

 One-Block Lookahead (OBL) scheme

 Initiate prefetch for block b + 1 when block b is accessed

 Why is this different from doubling block size?

 Can extend to N-block lookahead

 Strided prefetch

 If observe sequence of accesses to line b, b+N, b+2N, then prefetch b+3N etc.

 Example: IBM Power 5 [2003] supports eight independent streams of

strided prefetch per processor, prefetching 12 lines ahead of current

access

27

 for(i=0; i < N; i++) {

 prefetch(&a[i + 1]);

 prefetch(&b[i + 1]);

 SUM = SUM + a[i] * b[i];

 }

28

 Timing is the biggest issue, not predictability

 If you prefetch very close to when the data is required,

you might be too late

 Prefetch too early, cause pollution

 Estimate how long it will take for the data to come

into L1, so we can set P appropriately

 Why is this hard to do?

 for(i=0; i < N; i++) {

 prefetch(&a[i + P]);

 prefetch(&b[i + P]);

 SUM = SUM + a[i] * b[i];

 }

29

Must consider cost of prefetch instructions

 Restructuring code affects the data access sequence

 Group data accesses together to improve spatial locality

 Re-order data accesses to improve temporal locality

 Prevent data from entering the cache

 Useful for variables that will only be accessed once before being replaced

 Needs mechanism for software to tell hardware not to cache data (“no-allocate”

instruction hints or page table bits)

 Kill data that will never be used again

 Streaming data exploits spatial locality but not temporal locality

 Replace into dead cache locations

30

 for(j=0; j < N; j++) {
 for(i=0; i < M; i++) {
 x[i][j] = 2 * x[i][j];
 }
 }

 for(i=0; i < M; i++) {
 for(j=0; j < N; j++) {
 x[i][j] = 2 * x[i][j];
 }
 }

What type of locality does this improve?

31

for(i=0; i < N; i++)

 a[i] = b[i] * c[i];

for(i=0; i < N; i++)

 d[i] = a[i] * c[i];

32

 for(i=0; i < N; i++)

{

 a[i] = b[i] * c[i];

 d[i] = a[i] * c[i];

 }

What type of locality does this improve?

 for(i=0; i < N; i++)
 for(j=0; j < N; j++) {
 r = 0;
 for(k=0; k < N; k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = r;
 }

33

Not touched Old access New access

x j

i

y k

i

z j

k

 for(jj=0; jj < N; jj=jj+B)

 for(kk=0; kk < N; kk=kk+B)

 for(i=0; i < N; i++)

 for(j=jj; j < min(jj+B,N); j++) {

 r = 0;

 for(k=kk; k < min(kk+B,N); k++)

 r = r + y[i][k] * z[k][j];

 x[i][j] = x[i][j] + r;

 }

34

What type of locality does this improve?

y k

i

z j

k

x j

i

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

35

