


 Control hazards (branches, interrupts) are most difficult to handle as they 

change which instruction should be executed next 

 Branch delay slots make control hazard visible to software, but not 

portable to more advanced µarchs 

 Speculation commonly used to reduce effect of control hazards (predict 

sequential fetch, predict no exceptions, branch prediction) 

 Precise exceptions: stop cleanly on one instruction, all previous 

instructions completed, no following instructions have changed 

architectural state 

 To implement precise exceptions in pipeline, shift faulting instructions 

down pipeline to “commit” point, where exceptions are handled in 

program order 
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Punched cards, From early 
1700s through Jaquard Loom, 
Babbage, and then IBM 

Punched paper tape, 
instruction stream in 
Harvard Mk 1 

IBM Card Capacitor ROS 

IBM Balanced 
Capacitor ROS 

Diode Matrix, EDSAC-2 
µcode store 
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Williams Tube, 
Manchester Mark 1, 1947 

Babbage, 1800s: Digits 
stored on mechanical wheels 

Mercury Delay Line, Univac 1, 1951 

Also, regenerative capacitor memory on 
Atanasoff-Berry computer, and rotating 
magnetic drum memory on IBM 650 
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 Core memory was first large scale reliable main memory 

 invented by Forrester in late 40s/early 50s at MIT for 

Whirlwind project 

 Bits stored as magnetization polarity on small ferrite 

cores threaded onto two-dimensional grid of wires 

 Coincident current pulses on X and Y wires would write 

cell and also sense original state (destructive reads) 
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DEC PDP-8/E Board,   
4K words x 12 bits, (1968) 

 Robust, non-volatile storage 

 Used on space shuttle 
computers 

 Cores threaded onto wires by 
hand (25 billion a year at peak 
production) 

 Core access time ~ 1µs 

 



Semiconductor memory began to be 

competitive in early 1970s 

 Intel formed to exploit market for semiconductor 

memory 

 Early semiconductor memory was Static RAM  (SRAM).  

SRAM cell internals similar to a latch (cross-coupled 

inverters). 

 

First commercial Dynamic RAM (DRAM) 

was Intel 1103 

 1Kbit of storage on single chip 

 charge on a capacitor used to hold value 

 

Semiconductor memory quickly replaced 

core in ‘70s 
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Ta2O5 dielectric 

W bottom 
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word 
line access 
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bit 
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Storage 
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trench, stack) 
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[Samsung, sub-70nm DRAM, 2004] 
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bit lines 
word lines 

Memory cell 
(one bit) 

D Data 

  Bits stored in 2-dimensional arrays on chip 
  Modern chips have around 4-8 logical banks on each chip 

  each logical bank physically implemented as many smaller arrays 



 DIMM (Dual Inline Memory Module) 

contains multiple chips with 

clock/control/address signals connected 

in parallel (sometimes need buffers to 

drive signals to all chips) 

 Data pins work together to return wide 

word (e.g., 64-bit data bus using 16x4-bit 

parts) 
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Address lines multiplexed 
row/column address 

Clock and control signals 

Data bus 
(4b,8b,16b,32b) 

DRAM 
chip 

~12 

~7 



12 [ Apple A4 package cross-section, iFixit 2010 ] 

Two stacked 
DRAM die 
Processor 
plus logic die 

[ Apple A4 package on circuit board] 



 Three steps in read/write access to a given bank 

 Row access (RAS) 

 decode row address, enable addressed row (often multiple Kb in 

row) 

 bitlines share charge with storage cell 

 small change in voltage detected by sense amplifiers which latch 

whole row of bits 

 sense amplifiers drive bitlines full rail to recharge storage cells 

 Column access (CAS) 

 decode column address to select small number of sense amplifier 

latches (4, 8, 16, or 32 bits depending on DRAM package) 

 on read, send latched bits out to chip pins 

 on write, change sense amplifier latches which then charge storage 

cells to required value 

 can perform multiple column accesses on same row without 

another row access (burst mode) 

 Precharge 

 charges bit lines to known value, required before next row access 

 Each step has a latency of around 15-20ns in modern DRAMs 

 Various DRAM standards (DDR, RDRAM) have different ways of 

encoding the signals for transmission to the DRAM, but all 

share same core architecture 
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 [ Micron, 256Mb DDR2 SDRAM datasheet ] 
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Row Column Precharge Row’ 

Data 

200MHz 
Clock 

400Mb/s 
Data Rate 



Performance of high-speed computers is usually limited 

by memory bandwidth & latency 

  Latency (time for a single access) 

 Memory access time >> Processor cycle time 

  Bandwidth (number of accesses per unit time) 

if fraction m of instructions access memory 

 1+m memory references / instruction 

 CPI = 1 requires 1+m memory refs / cycle (assuming RISC-

V ISA) 
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Memory CPU 
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Time 

µProc 60%/year 
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7%/year 
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Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200 
instructions during time for one memory access! 
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Small 
Memory 

CPU 

Big Memory 

CPU 

  Signals have further to travel 
  Fan out to more locations 
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[ Foss, 
“Implementing 

Application-Specific 
Memory”, ISSCC 

1996 ] 

DRAM on 

memory chip 
On-Chip 

SRAM in 

logic chip 
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Small, 
Fast Memory 

(RF, SRAM) 

• capacity:  Register << SRAM << DRAM 
• latency:   Register << SRAM << DRAM 
• bandwidth: on-chip >> off-chip 

 

On a data access: 
if data  fast memory  low latency access (SRAM) 
if data  fast memory  high latency access (DRAM) 

CPU 
Big, Slow Memory 

(DRAM) 

A B 

holds frequently used data 



Small/fast storage, e.g., registers 

 Address usually specified in instruction 

 Generally implemented directly as a register file 

 but hardware might do things behind 

software’s back, e.g., stack management, 

register renaming 

 

Larger/slower storage, e.g., main 

memory 

 Address usually computed from values in 

register 

 Generally implemented as a hardware-managed 

cache hierarchy (hardware decides what is kept 

in fast memory) 

 but software may provide “hints”, e.g., don’t 

cache or prefetch 
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Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 

Memory. IBM Systems Journal 10(3): 168-192 (1971) 
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Temporal Locality: If a location is referenced it is 
likely to be referenced again in the near future. 
 

Spatial Locality: If a location is referenced it is 
likely that locations near it will be referenced in 
the near future. 

 



Donald J. Hatfield, Jeanette Gerald: Program 

Restructuring for Virtual Memory. IBM Systems 

Journal 10(3): 168-192 (1971) 
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Exploit temporal locality by remembering the 

contents of recently accessed locations. 

 

Exploit spatial locality by fetching blocks of data 

around recently accessed locations. 



CACHE Processor  Main 
Memory  

Address Address 

Data Data 

  Address 
     Tag 

Data Block 

Data 
Byte 

Data 
Byte 

Data 
Byte 

Line 100 

304 

6848 

copy of main 
memory 
location 100 

copy of main 
memory 
location 101 

 416 



   Look at Processor Address, search cache 

tags to find match.  Then either 

Found in cache 
a.k.a.  HIT 

Return copy 
of data from 
cache 

Not in cache 
a.k.a. MISS 

Read block of data from 
Main Memory 
 
Wait …  
 
Return data to processor 
and update cache 

Q: Which line do we replace? 
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In an associative cache, which block from a set should 
be evicted when the set becomes full? 
• Random 
• Least-Recently Used (LRU) 

• LRU cache state must be updated on every access 
• true implementation only feasible for small sets (2-way) 
• pseudo-LRU binary tree often used for 4-8 way 

• First-In, First-Out (FIFO) a.k.a. Round-Robin 
• used in highly associative caches 

• Not-Most-Recently Used (NMRU) 
• FIFO with exception for most-recently used block or blocks 
 

This is a second-order effect.  Why? 
 

Replacement only happens on misses 
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Word3 Word0 Word1 Word2 

Larger block size has distinct hardware advantages 
• less tag overhead 
• exploit fast burst transfers from DRAM 
• exploit fast burst transfers over wide busses 

What are the disadvantages of increasing block size? 

block address                             offsetb 

2b = block size a.k.a line size (in bytes) 

Split CPU 
address 

b bits 32-b bits 

Tag 

Block is unit of transfer between the cache and memory 

4 word block, b=2 

Fewer blocks => more conflicts.  Can waste bandwidth. 



 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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