

 Control hazards (branches, interrupts) are most difficult to handle as they

change which instruction should be executed next

 Branch delay slots make control hazard visible to software, but not

portable to more advanced µarchs

 Speculation commonly used to reduce effect of control hazards (predict

sequential fetch, predict no exceptions, branch prediction)

 Precise exceptions: stop cleanly on one instruction, all previous

instructions completed, no following instructions have changed

architectural state

 To implement precise exceptions in pipeline, shift faulting instructions

down pipeline to “commit” point, where exceptions are handled in

program order

2

3

Punched cards, From early
1700s through Jaquard Loom,
Babbage, and then IBM

Punched paper tape,
instruction stream in
Harvard Mk 1

IBM Card Capacitor ROS

IBM Balanced
Capacitor ROS

Diode Matrix, EDSAC-2
µcode store

4

Williams Tube,
Manchester Mark 1, 1947

Babbage, 1800s: Digits
stored on mechanical wheels

Mercury Delay Line, Univac 1, 1951

Also, regenerative capacitor memory on
Atanasoff-Berry computer, and rotating
magnetic drum memory on IBM 650

5

 Core memory was first large scale reliable main memory

 invented by Forrester in late 40s/early 50s at MIT for

Whirlwind project

 Bits stored as magnetization polarity on small ferrite

cores threaded onto two-dimensional grid of wires

 Coincident current pulses on X and Y wires would write

cell and also sense original state (destructive reads)

6

DEC PDP-8/E Board,
4K words x 12 bits, (1968)

 Robust, non-volatile storage

 Used on space shuttle
computers

 Cores threaded onto wires by
hand (25 billion a year at peak
production)

 Core access time ~ 1µs

Semiconductor memory began to be

competitive in early 1970s

 Intel formed to exploit market for semiconductor

memory

 Early semiconductor memory was Static RAM (SRAM).

SRAM cell internals similar to a latch (cross-coupled

inverters).

First commercial Dynamic RAM (DRAM)

was Intel 1103

 1Kbit of storage on single chip

 charge on a capacitor used to hold value

Semiconductor memory quickly replaced

core in ‘70s

7

8

TiN top electrode (VREF)

Ta2O5 dielectric

W bottom
electrode

poly
word
line access

transistor

1-T DRAM Cell

word

bit

access transistor

Storage
capacitor (FET gate,
trench, stack)

VREF

9
[Samsung, sub-70nm DRAM, 2004]

10

R
o

w
 A

d
d

re
ss

D

ec
o

d
er

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

D Data

 Bits stored in 2-dimensional arrays on chip
 Modern chips have around 4-8 logical banks on each chip

 each logical bank physically implemented as many smaller arrays

 DIMM (Dual Inline Memory Module)

contains multiple chips with

clock/control/address signals connected

in parallel (sometimes need buffers to

drive signals to all chips)

 Data pins work together to return wide

word (e.g., 64-bit data bus using 16x4-bit

parts)

 11

Address lines multiplexed
row/column address

Clock and control signals

Data bus
(4b,8b,16b,32b)

DRAM
chip

~12

~7

12 [Apple A4 package cross-section, iFixit 2010]

Two stacked
DRAM die
Processor
plus logic die

[Apple A4 package on circuit board]

 Three steps in read/write access to a given bank

 Row access (RAS)

 decode row address, enable addressed row (often multiple Kb in

row)

 bitlines share charge with storage cell

 small change in voltage detected by sense amplifiers which latch

whole row of bits

 sense amplifiers drive bitlines full rail to recharge storage cells

 Column access (CAS)

 decode column address to select small number of sense amplifier

latches (4, 8, 16, or 32 bits depending on DRAM package)

 on read, send latched bits out to chip pins

 on write, change sense amplifier latches which then charge storage

cells to required value

 can perform multiple column accesses on same row without

another row access (burst mode)

 Precharge

 charges bit lines to known value, required before next row access

 Each step has a latency of around 15-20ns in modern DRAMs

 Various DRAM standards (DDR, RDRAM) have different ways of

encoding the signals for transmission to the DRAM, but all

share same core architecture

13

 [Micron, 256Mb DDR2 SDRAM datasheet]

14

Row Column Precharge Row’

Data

200MHz
Clock

400Mb/s
Data Rate

Performance of high-speed computers is usually limited

by memory bandwidth & latency

 Latency (time for a single access)

 Memory access time >> Processor cycle time

 Bandwidth (number of accesses per unit time)

if fraction m of instructions access memory

 1+m memory references / instruction

 CPI = 1 requires 1+m memory refs / cycle (assuming RISC-

V ISA)

15

Memory CPU

16

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
(growing 50%/yr)

Pe
rf

o
rm

an
ce

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!

17

Small
Memory

CPU

Big Memory

CPU

 Signals have further to travel
 Fan out to more locations

18

[Foss,
“Implementing

Application-Specific
Memory”, ISSCC

1996]

DRAM on

memory chip
On-Chip

SRAM in

logic chip

19

Small,
Fast Memory

(RF, SRAM)

• capacity: Register << SRAM << DRAM
• latency: Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data  fast memory  low latency access (SRAM)
if data  fast memory  high latency access (DRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data

Small/fast storage, e.g., registers

 Address usually specified in instruction

 Generally implemented directly as a register file

 but hardware might do things behind

software’s back, e.g., stack management,

register renaming

Larger/slower storage, e.g., main

memory

 Address usually computed from values in

register

 Generally implemented as a hardware-managed

cache hierarchy (hardware decides what is kept

in fast memory)

 but software may provide “hints”, e.g., don’t

cache or prefetch

20

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual

Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Address

Time

Instruction
 fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

Temporal Locality: If a location is referenced it is
likely to be referenced again in the near future.

Spatial Locality: If a location is referenced it is
likely that locations near it will be referenced in
the near future.

Donald J. Hatfield, Jeanette Gerald: Program

Restructuring for Virtual Memory. IBM Systems

Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
 Locality

Exploit temporal locality by remembering the

contents of recently accessed locations.

Exploit spatial locality by fetching blocks of data

around recently accessed locations.

CACHE Processor Main
Memory

Address Address

Data Data

 Address
 Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line 100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

 416

 Look at Processor Address, search cache

tags to find match. Then either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Q: Which line do we replace?

28

0 1 2 3 4 5 6 7 0 1 2 3 Set Number

Cache

 Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into
 set 0 block 4
 (12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t
 k b

 t

HIT Data Word or Byte

 2k

lines

 Tag Data Block V

 =

Block
Offset

 Index

 t k

 b

 t

HIT Data Word or Byte

 2k

lines

Tag

 Tag Data Block V

 =

Block

Offset
 Tag Index

 t
 k

 b

HIT

 Tag Data Block V

Data

Word

or Byte

 =

 t

 Tag Data Block V

 =
B

lo
ck

O

ff
se

t
 T

ag

 t

 b

HIT

Data
Word
or Byte

 =

 =

 t

33

In an associative cache, which block from a set should
be evicted when the set becomes full?
• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used block or blocks

This is a second-order effect. Why?

Replacement only happens on misses

34

Word3 Word0 Word1 Word2

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits 32-b bits

Tag

Block is unit of transfer between the cache and memory

4 word block, b=2

Fewer blocks => more conflicts. Can waste bandwidth.

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

35

