ARCHITECTURE OF
COMPUTER SYSTEMS
LECTURE 6 - MEMORY

LAST TIME IN LECTURE 5

= Control hazards (branches, interrupts) are most difficult to handle as they
change which instruction should be executed next

= Branch delay slots make control hazard visible to software, but not
portable to more advanced parchs

= Speculation commonly used to reduce effect of control hazards (predict
sequential fetch, predict no exceptions, branch prediction)

= Precise exceptions: stop cleanly on one instruction, all previous
instructions completed, no following instructions have changed
architectural state

= To implement precise exceptions in pipeline, shift faulting instructions
down pipeline to “commit” point, where exceptions are handled in
program order

Punched cards, From early
1700s through Jaquard Loom,
Babbage, and then IBM

Punched paper tape,
instruction stream in

Harvard Mk 1

Diode Matrix, EDSAC-2
pcode store

IBM Balanced
Capacitor ROS

IBM Card Capacitor ROS

0

MAIN MEMORY
TECHNOLOG ;s

stored on mechanical wheels

:'y'*'_- -
o -

Williams Tube, L,
Manchester Mark 1, 194

s
‘.J ’

G evumn)
t *
. A
—™ v —
" ;- .
=

[, -
-

-~

.
o
~ s
=1

-
L)
1
1:--.'

Also, regenerative capacitor memory on
Atanasoff-Berry computer, and rotating
magnetic drum memory on IBM 650

5 4

L \'\Lr , F
= (i

ag gt cale reliable main memory
C O ' .EWFM @ i tei40s/early 50s at MIT for
irlwind project

= Bits stored as magnetization polarity on small ferrite
cores threaded onto two-dimensional grid of wires

= Coincident current pulses on X and Y wires would write
cell and also sense original state (destructive reads)

= Robust, non-volatile storage i

= Used on space shuttle Tadsl”~
computers Dbl i

= Cores threaded onto wires by i |
hand (25 billion a year at peak
production)

= Core access time ~ 1us
DEC PDP-8/E Board,

4K words x 12 bits, (1968) | | ‘ @

SEMIGONDUCTORMEMORY

é1n éarly

= Intel formed to exploit market for semiconductor
memory

= Early semiconductor memory was Static RAM (SRAM).
SRAM cell internals similar to a latch (cross-coupled
inverters).

= First commercial Dynamic RAM (DRAM)

was Intel 1103
= 1Kbit of storage on single chip

= charge on a capacitor used to hold value

Semiconductor memory quickly replaced
core in ‘70s

il Mpecd” il g miim s

DYNAMIC RAM
“BVERTN ARD, 1BM]

1.

word

_I__l__.\ access transistor

T

Vrer

Storage
capacitor (FET gate,
trench, stack)

TiN top electrode (Vgg)
TiN/Ta20s/W

Capacitor |
bit |

poly
word

line access
transistor

> ,
g &9 =

- BT R P, e — -
ey o arald o AR

‘'38@nNnm

X
.9.
®
X

e .80kV

2689887

©

[Samsung, sub-70nm DRAM, 2004]

bit lines

DRAM ARCHITECTUREY / %L yord lines
*/Row 1
7 oo o o o o
5 [FERERER
gg o FO PO PO O b Row 2N
SAl Koo o b t\
Memory cell
neM —L M, [Column Decoder & (one bit)

Sense Amplifiers

Data % D

= Bits stored in 2-dimensional arrays on chip

= Modern chips have around 4-8 logical banks on each chip
= each logical bank physically implemented as many smaller arrays

e

DRAM PACKAGING

(LAPTOPS/DESKTOPS/SERVERS)

Clock and control signals —#—

Address lines multiplexed
row/column address ~17

~7
DRAM
chip

Data bus ,I,
(4b,8b,16b,32b)

DIMM (Dual Inline Memory Module)
contains multiple chips with

clock/control/address signals connected
in parallel (sometimes need buffers to

drive signals to all chips)

Data pins work together to return wide
word (e.g., 64-bit data bus using 16x4-bit

parts)

B tasaay 154803
.,

llllllllllll

111

llllll

oooooooooo

lllllll

I —

72-pin SODIMM 168-pin DIMM

~

e
- 3 .

[Apple A4 package cross-section, iFixit 2010 |

QR AM DACKAGING, MOBILE

[Apple A4 package on circuit board]

Two stacked
DRAM die
Processor
plus logic die

)

= Three steps in read/write access to a given bank

D .S ‘ E(@PGE RA:[E;@ (often multiple Kb in

= bitlines share charge with storage cell

: ' lifi hich latch
Wrﬂgile%l(q)%l% lli)r}tgoltage detected by sense amplifiers which latc

= sense amplifiers drive bitlines full rail to recharge storage cells
= Column access (CAS)

- fiscpds epIgmbaddiess o selset amall Dupibit g pplifer
= on read, send latched bits out to chip pins

g write, change sense amplifier latches which then charge storage
cglls to requ1r§§ value p g 8

. cant%erform multiEI% columnc?c)cesses on same row without
another row access (burst mode

= Precharge
= charges bit lines to known value, required before next row access
= Each step has a latency of around 15-20ns in modern DRAMs

= Various DRAM standards (DDR, RDRAM) have different wa}/s of
encoding the signals for transmission to the DRAM, but al
share same core architecture

e

D@,‘H_,Tn"a’r' T\I\'_F'l\ nA"I"' /TYNTYD)
loc CK# \ e . . , n "

DI -

COMMAND? % r~.|opEj WM ACT Wﬁ(Nopﬁ W@(r~.|op6 W% READ? W@(NopB Wﬁ(prE/ W NopP >W/ nop® W&(ACT >@
M Row Co I% Pre Ro w’
[ADDRESS WW >Q///////////////////////////A col //’7/////////////5////// //// /////////////””////
Ato /////////////M ®)W///////// % T\é// ////////% W////////////////////////////%),

////////////// W// f///////////// " - : W -%/é/////////zf//// s)]
| tRCD 1 . : CL 3 \ : :
E tRAs ! ' | ‘ | \ | | RP '

'tRC' | i | i | | i | .
] \ ' 5
W%WWWW// /////// ////////////// //

Case 1: 'AC (MIN) an tDQSCK (MIN)

: : ! ! ! ! : : &-(D,?}f:(fé >¥< L

thg\mm)J tAC(M|N)JE tH2(MIN)JE

400Mb/s

Data Rate @

DQ!

CPU-MEN o, Y_B(..o .ENECK

Performance of high-speed computers is usually limited
by memory bandwidth & latency

= Latency (time for a single access)
= Memory access time >> Processor cycle time

= Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory
0 1+m memory references / instruction

0 CPI = 1 requires 1+m memory refs / cycle (assuming RISC-
V ISA)

G

PROCESSOR-DRAM GAP

(LAJENCY) weroceompyear

Performance

__ Processor-Memory
100 Performance Gap:
(growing 50%/yr)
1O | e A e p DRAM
/ 7%/year
1 O d a MM < N OO O IO IH NN < 1D O N OO O
00 00 00O OO0 OO 00O 00O 00 OO OO0 O O O O O O O Oy O O O
O OO OO0 OO O OO OO OO O OO OO O O OO O OO OO OO O
I 4 HHd = - e e e e N

Time

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!

e

PHYSICAL SIZEALFECTS
LATENCY -

g Memory

= Signals have further to trave
= Fan out to more locations

DRAM on

A/g%gemory chip

£ w

ME MO RY CELL

!
3

¥

'l'.-'l""-lﬁl rﬁr'm et

R ._!‘.'.’. i i
B e e G 08 WL [Foss,

e s i Bl AT TV

(&)
1 Memory cell in 0.5um processes

a) Gate Array SRAM
b) Embedded SRAM

“Implementing

App]zca tion-Specific
- Memory”, ISSCC

I R A T e T R e G B

¢) Standard SRAM (6T cell with local interconnect) 1996 1

d) ASIC DRAM

e) Standard DRAM (stacked cell)
Memorv Process Cell size Cell Bits in Gate size Gate Gates in

(um?) efficiency 100mm* 10"} (pum?) utilization 100mm?® {10

Gate array SRAM 3-metal ASIC 370 80°% 216 185 70% 378
Embedded SRAM 3-metal ASIC 67 T0% 1045 185 105 B8
Standard SRAM 2-metal 6T local int. 43 B 1512 245 4050 163
Embedded ASIC-DRAM 3-metal ASIC 23 80F 2609 185 10% 378
Standard DRAM 2-metal stacked cell 3.2 50°% 15625 311 40T 7

e

Table 1: Memory and logic density for a variety of 0.5um implementations.

IIITD A D

CPU K::> Fast Memory «——J
(RF, SRAM)

holds frequently used data

Big, Slow Memory
(DRAM)

® capacity: Register << SRAM << DRAM
e latency: Register << SRAM << DRAM
e bandwidth: on-chip >> off-chip

On a data access:

if data € fast memory = low latency access (SRAM)
if data ¢ fast memory = high latency access (DRAM)

s

MANAGEMENT OF MEMORY

rage, e€.g., registe
HIE QAQ S us 1 spec1f1ed in instruction
= Generally implemented directly as a register file

= but hardware might do things behind
software’s back, e.g., stack management,
register renaming

=Larger/slower storage, e.g., main

memory
= Address usually computed from values in
register

= Generally implemented as a hardware-managed
cache hierarchy (hardware decides what is kept
in fast memory)

= but software may provide “hints”, e.g., don’t
cache or prefetch

ALMEM@R¥%EFER£N@

esT]

1

w
™
i :
|

4

w
N

W
o

n
[

W R——— - —— -..- C e emin e bt p—— S e ——— | @7 - ._

- '-.A-J\'
R TR LA -*n\ ,ugn.ts ¥ BT RN
L e

Memory Address (one dot pe
%;

221 : gy - w2 — . G . L S —— ———
. (o PP = .
P o . pu anis % NSRS o #..;
20r = EROTIN ITIR N IR IDIOR s St e B 11903 Summe e S1] - 4 - — “ias m%
4
A R T Lt b AR] e L g etJ .
1 T T T e P S M e 10 e R o smme e
1845 78
—————

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual
Memory. IBM Systems Journal 10(3): 168-192 (1971)

TYPICAL MEMORY
REFERENCE f

nstruction o
fetches |.°
subroutine subroutine
Stack call - —_return
Q Q Q o] o] (o] (o] (o] (o] (o]
accesses o _ J ® 6 o o o
° argument access e © 0 o o
o] o]
(o]
Data
accesses scalar accesses
(o] (o] (o] (o] (o] (o] (o] (o] Time

e L atm in eimesnl sl 0 oSha 00 G L L] il mtbasl sitavral cRrerad

PROPERTIES OF MEMORY
REFERENCES:

=Temporal Locality: If a location 1s referenced it 1s
likely to be referenced again in the near future.

=Spatial Locality: If a location is referenced it is
likely that locations near 1t will be referenced 1n
the near future.

MEPIVIURT REPERLINCE

PATTERNS

TR 0 o P

w
N
-1

TR TTIE Aal Ll

=

w
N

W
o

- SPETCITS ©) SIS A -
. .,'._. . "o — L . - e bupegs ey ,....,_..— Gl A S e A p—— - —— pegrameey g ., ®
& < g Mo e o6 B1s Y e -y : ' - -wwni ,uc n--ts 3 A 4_,,.---0,-"‘5_-

D

‘4" no-

..... - ! ‘ > 75 ﬂﬁ”“ﬁ‘l’. h“‘ u‘.&:n’..‘

i e .-

n

N

et
i

4

gl S

L e B et e P e e N

n
N
e

20' DR ETIRLE e e PEIE AP MR AL L B MRy S e B

Memory Address (one dot per access)

B L ’ e .
4 T ﬂ",- EL AR UILL S SRPUE L UNTT L S .'0",. .I‘
\ tl‘n""“"‘l‘m.ul."llﬂl‘.‘ﬂ(lll”lﬂll e nein. llll..r | |

187

Donald J. Hatfield, Jeanette Gerald: ProngrIIrne
Restructuring for Virtual Memory. IBM Systems
Touirnal 10(R) 16R-192 (1071)

©

g s e Rae® alfo ety REont W’ ke e i rRia eitarel @ 2wl

BOTH TYPES OF
PREDICTABILITY:

= Exploit temporal locality by remembering the
contents of recently accessed locations.

= Exploit spatial locality by fetching blocks of data
around recently accessed locations.

INSIDE A

Processor

CACHE

CACHE

Data -

ddress

-, Data

copy of maln

Main
Memory

memory .- memory
|Ocatio"r:]..~~~100 location 101
- Data | Data
100 fBvte|Byte | | | -------
patal | | | _______
304 |Bvte
Address 6348
Tag 416

Line

Data Block

Found in cache

a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait ...

Return data to processor
and update cache

Q: Which line do we replace?

L

PLACEMENT POLICY

Block Number01234567893 é; éé;éé é%%%iéé%égg?
Memory
Set Number o 1 2 3 01234567
Cache
Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into
block 12
o set O block 4

can be placed
(12 mod 4) (12 mod 8)

)

ED CACHE

V| Tag Data Block

HIT

Data Word or Byte

DUIRECU L MAD ADIJREODOS
SELECTION

HiGHER-ORDFR VS TOWER-ORDER ADDRESS BITS

Index Tag Block
Qffset
k 7 t .
re b
V| Tag Data Block
2k
(o] Q o o (0] (@] |ines

HIT

Data Word or Byte

L VVAI’ bt‘i'
SSOCIATIVE CACHE
b

VTag jDataBlock V,;Tag |Data Block

Data
Word
or Byte

HIT

F'ULLLI AU IMLLY L

CALH g

|

I :_:\ o | on
o8

—=7

)
__J
I
¢)
+—»@—_—\ —
——/
HIT
o (o) e [\
éa&é | Data
m O @___\ Word
b [tY—

or Byte

REFLACEMEN T
RQachIcgchache, which block from a set should

be evicted when the set becomes full?

® Random
e Least-Recently Used (LRU)

e LRU cache state must be updated on every access
e true implementation only feasible for small sets (2-way)
e pseudo-LRU binary tree often used for 4-8 way

e First-In, First-Out (FIFO) a.k.a. Round-Robin
e used in highly associative caches
e Not-Most-Recently Used (NMRU)
e FIFO with exception for most-recently used block or blocks

This is a second-order effect. Why?

Replacement only happens on misses

33

BLUULK JSIZE AND
2P ALIALLOCALLLY

Tag Word0 Word1 Word? Word3 4 word block, b=2
Split CPU block address o‘fsetb
address
— VAN Y,
Y, Y
32-b bits b bits

2° = block size a.k.a line size (in bytes)

Larger block size has distinct hardware advantages
e |ess tag overhead
e exploit fast burst transfers from DRAM
e exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

(2)

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

o

