L7ABNN_ L B8 & BN 1 UANL, " JAL

COMPUTER SYSTEMS
LECTURE 5 - PIPELINING
I
(BRANCHES,
EXCEPTIONS)

“Reduces because fewer logic gates
pipeline bubbles on critical paths between flip-flops

= Pipelining increases clock frequency, while growing CPI
more slowly, hence giving greater performance

= Pipelining of instructions is complicated by HAZARDS:

= Structural hazards (two instructions want same hardware
resource)

= Data hazards (earlier instruction produces value needed by
later instruction)

= Control hazards (instruction changes control flow, e.g.,
branches or exceptions)

= Techniques to handle hazards:

1) Interlock (hold newer instruction until older instructions
drain out of pipeline and write back results)

2) Bypass (transfer value from older instruction to newer
instruction as soon as available somewhere in machine)

3) Speculate (guess effect of earlier instruction)

CONTROL HAZARDS

What do we need to calculate next PC?

=For Jumps
= Opcode, PC and offset

For Jump Register
= Opcode, Register value, and PC

«For Conditional Branches
= Opcode, Register (for condition), PC and offset

=For all other instructions
= Opcode and PC (and have to know it’s not one of above)

t5 t6

PC CALCULATION BUBBLES

(I,) X1 < x0 + 10 IF, ID, EX, MA, WB,

(I,) X3 < X2 + 17 IF, 1F, ID, EX, MA, WB,
(I,) IF, [IF; ID, EX, MA, WB,
time
t0O t1 t2 t3 t4 t5 t6 t7/
IF I]. - :[2 - I3 -
Resource ID L - L - -
Usage EX Il - :[2 - I3 - I4
MA Il - :[2 - I3 -
WB Il - :[2 - I3 -

- = pipeline bubble

0

DL ULALL INDAL
ADDRESS 13 PC+4

& [\
F NAL E M
1

\ 4
Oxd ﬁ ﬁ bubble — :l I I
—> Jump? I
\ 4
v
> »laddr
inst >

104 |Inst
Memory I
I, 096ADD A jump instruction kills (not stalls)
I, 100] 304 : the following instruction
I, 104ADb Kill

I, 304ADD How?

To kill a fetched

instruction -- Insert
a mux before IR
yy E M
Ox4 ﬁ C? bubble — :l I I
—> Jump? I, I,
- IRSrcp ;I
:I *|addr bubble-tl I
inst —]
304 Inst
Memory bubble
IRSrc, = Case opcodey
il 238?284 3, JAL = bubble
’ . = IM
I, 104ADB kill
I, 304ADD

0

JUMP PIPELINE DIAGRAMS

(I,) 096: ADD ID, EX; MA; WB;
(I,) 100: J 304 IF2 IDZ\EX2 MA2 WB,
(I5) 104: ADD IF; - x K x
304: ADD
time

t0 t1 t2 t3 t4 t5 t6 t7
IF I, I, I
ID I, I, -

Resource
Usage MA L, -
WB I, I, -

- = pipeline bubble

PIPELINING CONDITIONAL

=N <

bubble IJ_.I

—> BEQ? A
Taken?
. IRSrc,

> »|add

I a rinst bubble I__> _

104 Inst

Memory &

, 096 ADD Branch condition is not known until the
|, 100 BEQ x1,x2 +200 execute stage
I, 104 ADD what action should be taken in the
I 300 ADD

SN

decode stage ?

0

PIPELINING CONDITIONAL

I1
Taken?
M IRSrc, | ‘
:I > addrinst Mtl—l——»
108 |Inst |
Memaory ?
If the branch is taken
L 056 ADD - kill the two following instructions
:i 182 iE%XLXZ F200 - the instruction at the decode stage is
l, 300 ADD not valid = stall signal is not valid

0

PIPELJNINGWLONDI TIONAL

?
| IRSrC, Bcond: M
bubble- I 11 I

Un
Add

Jump? I

! T] Taken?

. R IRSrc,

I foddr Mﬁ- —1 . +H

108 |Inst | ”

Memory ?
If the branch is taken

;096 ADD - kill the two following instructions
:i 182 iE%XLXZ F200 - the instruction at the decode stage is
l,, 300 ADD not valid = stall signal is not valid

e

BRANCH PIPELINE

DIAGR-AM?& t2 t3 t4 t5 t6 t7

(RESGLVED [REXECUTESTAGE)A: o

(I,) 100: BEQ +200 IF, ID, EX, MA2 WB2
(I3) 104: ADD IF;
108: \
300: ADD
time

t0O t1 t2 t3 t4 t5 t6e t7

IF I, I, I,

ID I I I -
Resource EX A
1 2
Usage MA I L, -)

- = pipeline bubble

@

l_l., Mg N wlm | ulie wlis o o — ¥ iz € ol

REG AGAINST ZERO) WITH
COMPARE IN DECODE -
STAGE " b 2 5.5

(I,) 100: BEQZ +2oo IF2 IDZ\EXZ MA, WB,
(I,) 104: ADD IF, ~ - - -

300: ADD

time
t0 t1 t2 t3 t4 t5 t6 t7
IF I, I, I5

Resource 1D Lo Lo
Sage MA I, I, -
WB I I, -

- = pipeline bubble

)

DRNAINLUIL DUPRL.AL DU LD

(EXPOSE CONTROL
HABAR B sclobes SOELWAR E

follows a jump or branch is al ways executed

= gives compiler the flexibility to put in a useful

instruction where normally a pipeline bubble would
have resulted.

I, 096ADD

I, 100BEQZr1, +200 Delay slot instruction
I, 104ADD < executed regardless of
I, 300ADD branch outcome

BRANCH PIPELINE
DIAGRAMS

(BRANCH DELAY SLOT)

time
t0 t1 t2 t3 t4 t5 t6 t7
(1,) 096: ADD IF, ID, EX, MA, WB,
(1) 100: BEQZ +200 IF, ID, EX, MA, WB,
(I,) 104: ADD IF, ID, EX; MA, WB,
300: ADD
time
t0O t1 t2 t3 t4 t5 t6 t7
IF I, I L
Resource IE?(h %2 %3 I
1 2 3
Usage MA U S
WB I, I, I5

=)

POST-1990 RISC ISAS DON'T
HAVE DELAY SLOTS

= Encodes microarchitectural detail into ISA
= C.f. IBM 650 drum layout

= Performance issues
= E.g., I-cache miss on delay slot causes machine to wait, even if delay slot is a
NOP

= Complicates more advanced microarchitectures
= 30-stage pipeline with four-instruction-per-cycle issue

= Better branch prediction reduced need

G

INSTRUCTION MAY
NOT BE DISPATCHED

EVERY LY CLE G

= some infrequently used bypass paths may increase cycle
time and counteract the benefit of reducing CPI

= Loads have two-cycle latency
= Instruction after load cannot use load result

= MIPS-I ISA defined load delay slots, a software-visible pipeline
hazard (compiler schedules independent instruction or
inserts NOP to avoid hazard). Removed in MIPS-II (pipeline
interlocks added in hardware)

= MIPS:“Microprocessor without Interlocked Pipeline Stages”

= Conditional branches may cause bubbles
= kill following instruction(s) if no delay slots

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler. NOPs
increase instructions/program!

RI S gnstructmn f!t{ eISJOBC()H:eEO $wo pieces OD
JU iNd Pﬁn from the preceding instruction:
|s the preceding instruction a taken branch?

2) If so, what is the target address?

Instruction Taken known? Target known?
J After Inst. Decode After Inst. Decode
JR

B<cond.> After Inst. Decode After Reg. Fetch

After Execute After Inst. Decode

s

BRANGH PENALLLESAN

PC Generation/Mux

Branch
Target
Address
Known

Branch Direction
&

Jump Register
Target Known

: ﬁTNEgHZ 2000)

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

e

REDUCING CONTROL FLOW
PENALTY

= Software solutions

= Eliminate branches - loop unrolling
= Increases the run length

= Reduce resolution time - instruction scheduling

= Compute the branch condition as early as possible (of limited value because branches
often in critical path through code)

= Hardware solutions
= Find something else to do - delay slots

= Replaces pipeline bubbles with useful work (requires software cooperation)
= Speculate - branch prediction

= Speculative execution of instructions beyond the branch

o

/VIOIt/on —~

BRANEHPREBIGTIO
Modern branch predictors have high accuracy

(>95%) and can reduce branch penalties significantly

Required hardware support:
Prediction structures:
e Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:
e Keep result computation separate from commit
e Kill instructions following branch in pipeline
e Restore state to that following branch

STATIC BRANCH
PCKED)IEQJ;LQ-NS taken is ~60-70% but:

% v
backward forward ::
90% €> 50% 94

\/

ISA can attach preferred direction semantics to branches, e.g.,
Motorola MC88110

bneO (preferred taken) beqO (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64
typically reported as “80% accurate

=)

DYNAMIU bRANCUDN
PREDICTION
LEARNING BASED ON PAST
B AV {¢JRation

= The way a branch resolves may be a good predictor of the
way it will resolve at the next execution

=Spatial correlation

= Several branches may resolve in a highly correlated manner
(a preferred path of execution)

DRAINCI PREJIC I IUIN
BITS

e Assume 2 BP bits per instruction
e Change the prediction after two consecutive mistakes!

BP state:
(predict take/-take) x (last prediction right/wrong)

)

BRANGH: ™=~ =T*GTABLE

N
_F,k L1 2k_entry
I-Cache BHT Index L{ BHT,
2 bits/entry
Instruction
Opcode offset
7 &
+
| |
Branch? Target PC Taken/-Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

2)

EXPT OTTING SPATIA
CORRLLAT‘TﬂNe”

YEH AND PATT, 1992 |if (x[i] < 5) then
C -=4;

If first condition false, second condition also
false

History register, H, records the direction of the
last N branches executed by the processor

TWO-LkN ElL: BRAN (k-

to select one of the four sets of BHT bits (~95% correct)

PREDIET

010

Fetch PC

-

2-bit global branch history

shift register

Shift in Taken/-Taken
results of each branch

H
T/

||

A e—

/

Taken/-Taken?

)

SPE.(‘;MAILééa ivIel\t‘L raﬁcpplﬁuon -
DIR E’@E}f‘:}t CONES

fyections of a branch
speculalively

= resource requirement is proportional to the number
of concurrent speculative executions

= only half the resources engage in useful work when
both directions of a branch are executed speculatively

= branch prediction takes less resources than
speculative execution of both paths

= With accurate branch prediction, it is
more cost effective to dedicate all
resources to the predicted direction!

)

LIMEEATIONS OF BHTS

PC Generation/Mux
P | Instruction Fetch Stage 1
F | Instruction Fetch Stage 2
B | Branch Address Calc/Begin Decode
| | Complete Decode
Jump Register J | Steer Instructions to Functional units
penalty R | Register File Read
E | Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

)

BRANCH TARGET

IMEM

predicted BPb
I target
Branch
[J
¢ | S s | Target
. o ° Buffer
Y []
(2k entries)
E— Tk
PC
] 1 A~
— target BP

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
Later: check prediction, if wrong then kill the instruction and
update BTB & BPb else update BPb

2)

ADDRESS COLLISIQ

Assume a
128-entry
BTB
target BPb
236 [take |
What will be fetched after the instruction at 1028?
BTB prediction = 236
Correct target = 1032

kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these bubbles?

NS

132 Jump +104

1028 Add

Instruction
Memory

BTB IS OMNcenta(dRuEUNHTRG3EI kNG BPRibidh 3 i1 dvp
instructions only
Do not update it for other instructions

= For all other instructions the next PCis PC+4 |

= How to achieve this effect without decoding the instruction?

)

CH. TARGET-BHEFER

associative

' "

j X
@A - 3 Lo
—

Entry PC Valid predicted
B i - y target PC
. k . . .
Y < ® [] ®
® [] L4 [J
—_— match valid target

e Keep both the branch PC and target PC in the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

e Next PC determined before branch fetched and decoded

)

COMBINING BTB AND

B-HlTentries are considerably more expensive than BHT, but
can redirect fetches at earlier stage in pipeline and can
accelerate indirect branches (JR)

= BHT can hold many more entries and is more accurate

r“’

A
BTB||P
F
BHT in later BHTI I B
pipeline stage |
corrects when
BTB misses a J
predicted taken R
branch .

/

PC Generation/Mux

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

BTB/BHT only updated after branch resolves in E stage

&)

USES OF JUMP REGISTER (JR)

BTB works well if same case used repeatedly
= Switch statements (jump to address of matching case)

BTB works well if same function usually called, (e.g., in
- Dynamic furctiBiP8AMMnS WhrhotiRethliiMicr R@dyas)n virtual

function call)

BTB works well if usually return to the same place
= Subroutine retiiftes) (jumputetretucn/leddress)many distinct call sites!

How well does BTB work for each of these cases?

(2)

SUDRUU LINE RETURN
STACK

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

fa() { £b(); }
fb() { £c(); }
fc() { £d4(); }

Pop return address when

Push call address when
function call executed /\ m subroutine return decoded

&£d () k entries
&fc () (typically k=8-16)
&fb ()

o

INTERRUPTS.

ALTERING THE NORMAL FLOW OF CONTROL

interrupt

program handler

An external or internal event that needs to be processed by another (system)

program. The event is usually unexpected or rare from program’s point of view.

&)

ES OF INTERRUPTS. .

= Asynchronous: an external event
= input/output device service-request
= {imer expiration
= power disruptions, hardware failure

= Synchronous: an internal event (a.k.a. traps or exceptions)
= undefined opcode, privileged instruction

arithmetic overflow, FPU exception
misaligned memory access

virtual memory exceptions: page faults,
TLB misses, protection violations

system calls, e.g., jumps into kernel

©

HISTORY OF EXCEPTION
HAN;‘?EINGth exceptions was Univac-I,

= Arithmetic overflow would either

= 1. trigger the execution a two-instruction fix-up routine
at address O, or

= 2. at the programmer's option, cause the computer to
stop

= Later Univac 1103, 1955, modified to add external
interrupts

= Used to gather real-time wind tunnel data

= First system with I/0O interrupts was
DYSEAC, 1954

= Had two program counters, and I/0 signal caused switch
between two PCs

= Also, first system with DMA (direct rfeandeyyaMeessShwptygyman]
device)

o

DYSEAC FIRST MORIIF

e Carried in two tractor trailers, 12 tons + 8 tons

[Courtesy Mark Smotherman] @

e Built for US Army Signal Corps

ASYNCHRONOUS
INTﬁRBdHB% qd;tlgi?tﬁ_zleqsby asserting one of the

INVOKING THE INTERRUPT HANDLER

= When the processor decides to process the interrupt
= [t stops the current program at instruction Ii,

completing all the instructions up to [;_ (precise
interrupt)

= It saves the PC of instruction I; in a special register
(EPC)

= [t disables interrupts and transfers control to a
designated interrupt handler running in the kernel
mode

INTERRUPT HANDLER

= Saves EPC before enabling interrupts to allow nested interrupts =
= need an instruction to move EPC into GPRs
= need a way to mask further interrupts at least until EPC can be saved

= Needs to read a status register that indicates the cause of the interrupt

= Uses a special indirect jump instruction RFE (return-from-exception) which
= enables interrupts
= restores the processor to the user mode
= restores hardware status and control state

©

SYNCHRONOQUS INLERRUPTS

partzcular instruction

= In general, the instruction cannot be completed and

needs to be restarted after the exception has been
handled

= requires undoing the effect of one or more partially
executed instructions

= In the case of a system call trap, the instruction is
considered to have been completed

= a special jump instruction involving a change to
privileged kernel mode

o

EXCEPTION HANDLING ;s

PIPEL
Inst. Decode Data
Mem o+ Mem
C address \ lllegal D

ata address
Overflow

Exception Opcode Exceptions

»

Asynchronous Interrupts

= How to handle multiple simultaneous exceptions
in different pipeline stages?

= How and where to handle external asynchronous
interrupts?

EXCEPTION HANDLIN PR AGE

PIPELINE .
Inst. DataE
Mermn Decode I IVIemE
lllegal Overflow %ata address E
Exception Opcode Exceptions =
=ie jel oI
>
] ©
- @)
[i@
Select > > 4 - o
Handler Kill F Kill D Kill E Asynchronous &
PC Stage Stage Stage Interrupts j
) Kill
Writeback

e

EXCEPTION HANDLING ;s

PIPELINE

= Hold exception flags in pipeline until commit point (M stage)

= Exceptions in earlier pipe stages override later exceptions for a given
instruction

= Inject external interrupts at commit point (override others)

= If exception at commit: update Cause and EPC registers, kill all stages,
inject handler PC into fetch stage

o

SPECULATING ON
EXCERIION:

is very accurate!”

= Check prediction mechanism

= Exceptions detected at end of instruction execution
pipeline, special hardware for various exception types

=Recovery mechanism

= Only write architectural state at commit point, so can
throw away partially executed instructions after
exception

= Launch exception handler after flushing pipeline

-Bypassing allows use of uncommitted
instruction results by following
instructions

EXCEPTION PIPELINE
DIAGRAM

(I,) 096: ADD
(I,) 100: XOR
(I,) 104: SUB

108: ADD

time

t0 t1

IF, ID,
IF,

Exc. Handler code

Resource
Usage

time
t0O t1
IF I, I,
ID I,
EX
MA
WB

t2
EX,
ID,
IF,

t3 t4
MA, -
EX,\\:-
ID, \'-

t3 t4

I3 =

t5

t5

t6 t7
overflow!
t6 t7

©

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

o

