


 Pipelining increases clock frequency, while growing CPI 

more slowly, hence giving greater performance 

 Pipelining of instructions is complicated by HAZARDS: 

 Structural hazards (two instructions want same hardware 

resource) 

 Data hazards (earlier instruction produces value needed by 

later instruction) 

 Control hazards (instruction changes control flow, e.g., 

branches or exceptions) 

 Techniques to handle hazards: 

1) Interlock (hold newer instruction until older instructions 

drain out of pipeline and write back results) 

2) Bypass (transfer value from older instruction to newer 

instruction as soon as available somewhere in machine) 

3) Speculate (guess effect of earlier instruction) 
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      Time     =   Instructions         Cycles            Time 
   Program           Program    *  Instruction  *  Cycle 

Reduces because fewer logic gates 
on critical paths between flip-flops 

Increases because of 
pipeline bubbles 



What do we need to calculate next PC? 

 

For Jumps 

  Opcode, PC and offset 

For Jump Register 

 Opcode, Register value, and PC 

For Conditional Branches 

 Opcode, Register (for condition), PC and offset 

For all other instructions 

 Opcode and PC ( and have to know it’s not one of above ) 
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 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) x1 x0 + 10 IF1 ID1 EX1 MA1 WB1 

(I2) x3 x2 + 17  IF2 IF2 ID2 EX2 MA2 WB2 

(I3)       IF3 IF3 ID3 EX3 MA3 WB3 

(I4)                          IF4 IF4 ID4 EX4 MA4 WB4 

 

time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 - I2 - I3 - I4   

ID  I1 - I2 - I3 - I4 

EX         I1 - I2 - I3 - I4 

MA         I1 - I2 - I3 - I4 

WB         I1 - I2 - I3 - I4 

Resource  
Usage 

-       pipeline bubble 
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I1 096 ADD  
I2 100 J 304 
I3 104 ADD 
I4 304 ADD 

kill 

A jump instruction kills (not stalls) 
the following instruction 

stall 

How? 

I2 

I1 

104 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 

Add 

bubble 

IR 

E M 
Add 

Jump? 

PCSrc (pc+4 / jabs / rind/ br) 

PC 
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I1 096 ADD  
I2 100 J 304 
I3 104 ADD 
I4 304 ADD 

kill 

I2 

I1 

104 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 

Add 

bubble 

IR 

E M 
Add 

Jump? 

PCSrc (pc+4 / jabs / rind/ br) 

IRSrcD = Case opcodeD 
J, JAL  bubble 
...   IM 

To kill a fetched 
instruction --  Insert 
a mux before IR 

Any 
interaction 
between 
stall and 
jump? 

bubble 

IRSrcD 

I2 I1 

304 
bubble 

PC 
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time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4 I5  
ID  I1 I2 -  I4 I5 
EX         I1 I2 -  I4 I5 

MA         I1 I2 -  I4 I5 

WB         I1 I2 -  I4 I5 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1 WB1 

(I2) 100: J 304  IF2 ID2 EX2 MA2 WB2 

(I3) 104: ADD    IF3 -  -  -  - 

(I4) 304: ADD                    IF4 ID4 EX4 MA4 WB4 

Resource  
Usage 

-       pipeline bubble 
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I1 096 ADD  
I2 100 BEQ x1,x2 +200 
I3 104 ADD 
I4 300 ADD 

BEQ? 

I2 

I1 

104 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

bubble 

IR 

E M 

PCSrc (pc+4 / jabs / rind / br) 

bubble 

IRSrcD 

Branch condition is not known until the 
execute stage  

what action should be taken in the 
decode stage ? 

A 

Y ALU 

Taken? 
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I1 096 ADD  
I2 100 BEQ x1,x2 +200 
I3 104 ADD 
I4 300 ADD 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

bubble 

IR 

E M 

PCSrc (pc+4 / jabs / rind / br) 

bubble 

IRSrcD 

A 

Y ALU 

Taken? 

If the branch is taken 
- kill the two following instructions 
- the instruction at the decode stage is 

not valid  stall signal is not valid 

I2 I1 

108 
I3 

Bcond? 

? 
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I1: 096 ADD  
I2: 100 BEQ x1,x2 +200 
I3: 104 ADD 
I4: 300 ADD 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 
Add 

bubble 

IR 

E M 

PCSrc (pc+4/jabs/rind/br) 

bubble A 

Y ALU 

Taken? 

I2 I1 

108 
I3 

Bcond? 

Jump? 

IRSrcD 

IRSrcE 

If the branch is taken 
- kill the two following instructions 
- the instruction at the decode stage is 

not valid  stall signal is not valid 
A

d
d

 

PC 

PC 
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time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4 I5  
ID  I1 I2 I3  -  I5 
EX         I1 I2 -  -  I5 

MA         I1 I2 -  -  I5 

WB         I1 I2 -  -  I5 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1 WB1 

(I2) 100: BEQ  +200 IF2 ID2 EX2 MA2 WB2 

(I3) 104: ADD    IF3 ID3  -  -  - 

(I4) 108:                      IF4 -  -  -  - 

(I5) 300: ADD                     IF5 ID5 EX5 MA5 WB5 

 

Resource  
Usage 

-       pipeline bubble 
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time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4 I5  
ID  I1 I2 -  I4 I5 
EX         I1 I2 -  I4 I5 

MA         I1 I2 -  I4 I5 

WB         I1 I2 -  I4 I5 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1 WB1 

(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2 

(I3) 104: ADD    IF3 -  -  -  - 

(I4) 300: ADD                    IF4 ID4 EX4 MA4 WB4 

Resource  
Usage 

-       pipeline bubble 



 Change the ISA semantics so that the instruction that 

follows a jump or branch is always executed 

 gives compiler the flexibility to put in a useful 

instruction where normally a pipeline bubble would 

have resulted. 
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I1 096 ADD  
I2 100 BEQZ r1, +200 
I3 104 ADD 
I4 300 ADD 

Delay slot instruction 

executed regardless of 

branch outcome 
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time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4   
ID  I1 I2 I3  I4 
EX         I1 I2 I3  I4 

MA         I1 I2     I3     I4 

WB         I1 I2 I3     I4 

 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1 WB1 

(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2 

(I3) 104: ADD    IF3 ID3 EX3 MA3 WB3 

(I4) 300: ADD                    IF4 ID4 EX4 MA4 WB4 

 

Resource  
Usage 



 Encodes microarchitectural detail into ISA 

 C.f. IBM 650 drum layout 

 Performance issues 

 E.g., I-cache miss on delay slot causes machine to wait, even if delay slot is a 

NOP 

 Complicates more advanced microarchitectures 

 30-stage pipeline with four-instruction-per-cycle issue 

 Better branch prediction reduced need 
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 Full bypassing may be too expensive to implement 

 typically all frequently used paths are provided 

 some infrequently used bypass paths may increase cycle 

time and counteract the benefit of reducing CPI 

  Loads have two-cycle latency 

 Instruction after load cannot use load result 

 MIPS-I ISA defined load delay slots, a software-visible pipeline 

hazard (compiler schedules independent instruction or 

inserts NOP to avoid hazard). Removed in MIPS-II (pipeline 

interlocks added in hardware) 

 MIPS:“Microprocessor without Interlocked Pipeline Stages” 

  Conditional branches may cause bubbles 

 kill following instruction(s) if no delay slots 
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Machines with software-visible delay slots may execute significant 
number of NOP instructions inserted by the compiler.  NOPs 
increase instructions/program! 
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Instruction  Taken known? Target known? 
J 
JR 
B<cond.> 

Each instruction fetch depends on one or two pieces of 
information from the preceding instruction: 
 1) Is the preceding instruction a taken branch? 
 2) If so, what is the target address? 

After Inst. Decode 

After Inst. Decode After Inst. Decode 

After Inst. Decode After Reg. Fetch 

After Execute 
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A  PC Generation/Mux 

P  Instruction Fetch Stage 1 

F  Instruction Fetch Stage 2 

B  Branch Address Calc/Begin Decode 

I  Complete Decode 

J  Steer Instructions to Functional units 

R  Register File Read 

E  Integer Execute 

Remainder of execute pipeline  
(+ another 6 stages) 

UltraSPARC-III instruction fetch pipeline stages 
(in-order issue, 4-way superscalar, 750MHz, 2000) 

Branch 
Target 
Address 
Known 

Branch Direction 
& 
Jump Register 
Target Known 



 Software solutions 

  Eliminate branches - loop unrolling 

 Increases the run length  

  Reduce resolution time - instruction scheduling 

 Compute the branch condition as early as possible (of limited value because branches 

often in critical path through code) 

 

 Hardware solutions 

  Find something else to do - delay slots 

 Replaces pipeline bubbles with useful work (requires software cooperation) 

  Speculate - branch prediction 

 Speculative execution of instructions beyond the branch 
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Motivation: 
Branch penalties limit performance of deeply pipelined 
processors 
Modern branch predictors have high accuracy 
(>95%) and can reduce branch penalties significantly 

 
Required hardware support: 

Prediction structures:  
• Branch history tables, branch target buffers, etc. 

 
Mispredict recovery mechanisms: 

• Keep result computation separate from commit  
• Kill instructions following branch in pipeline 
• Restore state to that following branch 
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Overall probability a branch is taken is ~60-70% but: 

ISA can attach preferred direction semantics to branches, e.g., 
Motorola MC88110 

bne0 (preferred  taken)  beq0 (not taken) 
 
ISA can allow arbitrary choice of statically predicted direction, 
e.g., HP PA-RISC, Intel IA-64 
      typically reported as ~80% accurate 

backward 
90% 

forward 
50% 



Temporal correlation 

 The way a branch resolves may be a good predictor of the 

way it will resolve at the next execution 

Spatial correlation  

 Several branches may resolve in a highly correlated manner 

(a preferred path of execution) 
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• Assume 2 BP bits per instruction 
• Change the prediction after two consecutive mistakes! 

¬take 
wrong 

taken 
¬ taken 

taken 

taken 

taken 

¬take 
right 

take 
right 

take 
wrong 

¬ taken 

¬ taken ¬ taken 

BP state:  
 (predict take/¬take) x (last prediction right/wrong) 
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4K-entry BHT, 2 bits/entry, ~80-90% correct predictions 

0 0 Fetch PC 

Branch? Target PC 

+ 

I-Cache 

Opcode offset 
Instruction 

k 

BHT Index 

2k-entry 
BHT, 
2 bits/entry 

Taken/¬Taken? 
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History register, H, records the direction of the 
last N branches executed by the processor 
 

 

if (x[i] < 7) then 

 y += 1; 

if (x[i] < 5) then 

 c -= 4; 

If first condition false, second condition also 
false 
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Pentium Pro uses the result from the last two branches 
to select one of the four sets of BHT bits (~95% correct) 

0 0 

k Fetch PC 

Shift in Taken/¬Taken 
results of each branch 

2-bit global branch history 
shift register 

Taken/¬Taken? 



An alternative to branch prediction is to 

execute both directions of a branch 

speculatively 

 resource requirement is proportional to the number 

of concurrent speculative executions 

 only half the resources engage in useful work when 

both directions of a branch are executed speculatively 

  branch prediction takes less resources than 

speculative execution of both paths 

With accurate branch prediction, it is 

more cost effective to dedicate all 

resources to the predicted direction! 
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Only predicts branch direction. Therefore, cannot redirect fetch stream until 
after branch target is determined. 

UltraSPARC-III fetch pipeline 

Correctly predicted  

taken branch 
penalty 

Jump Register 
penalty 

A  PC Generation/Mux 

P  Instruction Fetch Stage 1 

F  Instruction Fetch Stage 2 

B  Branch Address Calc/Begin Decode 

I  Complete Decode 

J  Steer Instructions to Functional units 

R  Register File Read 

E  Integer Execute 

Remainder of execute pipeline  
(+ another 6 stages) 
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BP bits are stored with the predicted target address. 
 
IF stage: If (BP=taken) then nPC=target else nPC=PC+4 
Later: check prediction, if wrong then kill the instruction and 
update BTB & BPb else update BPb 

IMEM 

PC 

Branch  
Target  
Buffer  
(2k entries) 

k 

BPb predicted 

target BP 

 target 
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What will be fetched after the instruction at 1028? 
 BTB prediction =      
 Correct target =    
  
  

Assume a  
128-entry  
BTB 

BPb target 

take 236 

1028  Add ..... 

132  Jump +104 

Instruction 
Memory 

236 
1032 

kill  PC=236 and fetch PC=1032 
 
 Is this a common occurrence? 
 Can we avoid these bubbles? 
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 BTB contains useful information for branch and jump 
instructions only 

 Do not update it for other instructions 
 

 For all other instructions the next PC is PC+4 ! 
 

 How to achieve this effect without decoding the instruction? 
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• Keep both the branch PC and target PC in the BTB  
• PC+4 is fetched if match fails 
• Only taken branches and jumps held in BTB 
• Next PC determined before branch fetched and decoded 

2k-entry direct-mapped BTB 
(can also be associative) 

I-Cache PC 

k 

Valid 

valid 

Entry PC 

= 

match 

predicted 

target 

target PC 



 BTB entries are considerably more expensive than BHT, but 

can redirect fetches at earlier stage in pipeline and can 

accelerate indirect branches (JR) 

 BHT can hold many more entries and is more accurate 
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A  PC Generation/Mux 

P  Instruction Fetch Stage 1 

F  Instruction Fetch Stage 2 

B  Branch Address Calc/Begin Decode 

I  Complete Decode 

J  Steer Instructions to Functional units 

R  Register File Read 

E  Integer Execute 

BTB 

BHT BHT in later 
pipeline stage 
corrects when 
BTB misses a 
predicted taken 
branch 

BTB/BHT only updated after branch resolves in E stage 



 Switch statements (jump to address of matching case) 

 

 

 Dynamic function call (jump to run-time function address) 

 

 

 

 Subroutine returns (jump to return address) 
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How well does BTB work for each of these cases? 

BTB works well if same case used repeatedly 

BTB works well if same function usually called, (e.g., in 
C++ programming, when objects have same type in virtual 
function call) 

BTB works well if usually return to the same place 

  Often one function called from many distinct call sites! 



Small structure to accelerate JR for subroutine returns, 

typically much more accurate than BTBs. 
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&fb() 

&fc() 

Push call address when 
function call executed 

Pop return address when 
subroutine return decoded  

fa() { fb(); } 

fb() { fc(); } 

fc() { fd(); } 

&fd() k entries 
(typically k=8-16) 
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Ii-1 HI1 

HI2 

HIn 

Ii 

Ii+1 

program 
interrupt  
handler 

An external or internal event  that needs to be processed by another (system) 
program. The event is usually unexpected or rare from program’s point of view.  
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 Asynchronous: an external event  

 input/output device service-request 

 timer expiration 

 power disruptions, hardware failure 

 Synchronous: an internal event (a.k.a. traps or exceptions) 

 undefined opcode, privileged instruction 

 arithmetic overflow, FPU exception 

 misaligned memory access  

 virtual memory exceptions: page faults, 

            TLB misses, protection violations 

 system calls, e.g., jumps into kernel  

Interrupt: an event that requests the attention of the processor 



First system with exceptions was Univac-I, 

1951 

 Arithmetic overflow would either 

 1. trigger the execution a two-instruction fix-up routine 

at address 0, or 

 2. at the programmer's option, cause the computer to 

stop 

 Later Univac 1103, 1955, modified to add external 

interrupts 

 Used to gather real-time wind tunnel data 

First system with I/O interrupts was 

DYSEAC, 1954 

 Had two program counters, and I/O signal caused switch 

between two PCs 

 Also, first system with DMA (direct memory access by I/O 

device) 
38 

[Courtesy Mark Smotherman] 
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• Carried in two tractor trailers, 12 tons + 8 tons 

• Built for US Army Signal Corps 
[Courtesy Mark Smotherman] 



 An I/O device requests attention by asserting one of the 

prioritized interrupt request lines 

 

 When the processor decides to process the interrupt  

 It stops the current program at instruction I
i
, 

completing all the instructions up to I
i-1

        (precise 

interrupt) 

 It saves the PC of instruction I
i
 in a special register 

(EPC) 

 It disables interrupts and transfers control to a 

designated interrupt handler running in the kernel 

mode 
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 Saves EPC before enabling interrupts to allow nested interrupts     

 need an instruction to move EPC into GPRs  

 need a way to mask further interrupts at least until EPC can be saved 

 Needs to read a status register that indicates the cause of the interrupt 

 Uses a special indirect jump instruction RFE (return-from-exception) which 

 enables interrupts 

 restores the processor to the user mode 

 restores hardware status and control state 

41 



 A synchronous interrupt (exception) is caused by a 

particular instruction 

 

 In general, the instruction cannot be completed and 

needs to be restarted after the exception has been 

handled 

 requires undoing the effect of one or more partially 

executed instructions 

 

 In the case of a system call trap, the instruction is 

considered to have been completed   

 a special jump instruction involving a change to 

privileged kernel mode 
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 How to handle multiple simultaneous exceptions 

in different pipeline stages? 

 How and where to handle external asynchronous 

interrupts? 
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PC 
Inst. 
Mem D Decode E M 

Data 
Mem W + 

Illegal 
Opcode 

Overflow 
Data address 
Exceptions 

PC address 
Exception 

Asynchronous Interrupts 
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PC 
Inst. 
Mem D Decode E M 

Data 
Mem W + 

Illegal 
Opcode 

Overflow Data address 
Exceptions 

PC address 
Exception 

Asynchronous 
Interrupts 

Exc 
D 

PC 
D 

Exc 
E 

PC 
E 

Exc 
M 

PC 
M 

C
au

se
 

EP
C

 

Kill D 
Stage 

Kill F 
Stage 

Kill E 
Stage 

Select 
Handler 
PC 

Kill 
Writeback 

Commit 
Point 



 Hold exception flags in pipeline until commit point (M stage) 

 

 Exceptions in earlier pipe stages override later exceptions for a given 

instruction 

 

 Inject external interrupts at commit point (override others) 

 

 If exception at commit: update Cause and EPC registers, kill all stages, 

inject handler PC into fetch stage 
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Prediction mechanism 

 Exceptions are rare, so simply predicting no exceptions 

is very accurate! 

Check prediction mechanism 

 Exceptions detected at end of instruction execution 

pipeline, special hardware for various exception types 

Recovery mechanism 

 Only write architectural state at commit point, so can 

throw away partially executed instructions after 

exception 

 Launch exception handler after flushing pipeline 

 

Bypassing allows use of uncommitted 

instruction results by following 

instructions 
46 
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time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4 I5   
ID  I1 I2 I3   -   I5 
EX         I1 I2  -    -   I5 

MA         I1  -    -    -   I5 

WB          -    -    -    -   I5 

 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1  -    overflow! 

(I2) 100: XOR   IF2 ID2 EX2  -    -  
(I3) 104: SUB    IF3 ID3  -    -    -  
(I4) 108: ADD                    IF4  -    -    -   -  
(I5) Exc. Handler code                   IF5 ID5 EX5 MA5 WB5 

 
 

Resource  
Usage 



 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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