

 Pipelining increases clock frequency, while growing CPI

more slowly, hence giving greater performance

 Pipelining of instructions is complicated by HAZARDS:

 Structural hazards (two instructions want same hardware

resource)

 Data hazards (earlier instruction produces value needed by

later instruction)

 Control hazards (instruction changes control flow, e.g.,

branches or exceptions)

 Techniques to handle hazards:

1) Interlock (hold newer instruction until older instructions

drain out of pipeline and write back results)

2) Bypass (transfer value from older instruction to newer

instruction as soon as available somewhere in machine)

3) Speculate (guess effect of earlier instruction)

2

 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle

Reduces because fewer logic gates
on critical paths between flip-flops

Increases because of
pipeline bubbles

What do we need to calculate next PC?

For Jumps

 Opcode, PC and offset

For Jump Register

 Opcode, Register value, and PC

For Conditional Branches

 Opcode, Register (for condition), PC and offset

For all other instructions

 Opcode and PC (and have to know it’s not one of above)

3

4

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) x1 x0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) x3 x2 + 17 IF2 IF2 ID2 EX2 MA2 WB2

(I3) IF3 IF3 ID3 EX3 MA3 WB3

(I4) IF4 IF4 ID4 EX4 MA4 WB4

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 - I2 - I3 - I4

ID I1 - I2 - I3 - I4

EX I1 - I2 - I3 - I4

MA I1 - I2 - I3 - I4

WB I1 - I2 - I3 - I4

Resource
Usage

-  pipeline bubble

5

I1 096 ADD
I2 100 J 304
I3 104 ADD
I4 304 ADD

kill

A jump instruction kills (not stalls)
the following instruction

stall

How?

I2

I1

104

IR IR

PC addr
inst

Inst
Memory

0x4

Add

bubble

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

PC

6

I1 096 ADD
I2 100 J 304
I3 104 ADD
I4 304 ADD

kill

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4

Add

bubble

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

IRSrcD = Case opcodeD
J, JAL bubble
... IM

To kill a fetched
instruction -- Insert
a mux before IR

Any
interaction
between
stall and
jump?

bubble

IRSrcD

I2 I1

304
bubble

PC

7

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 - I4 I5
EX I1 I2 - I4 I5

MA I1 I2 - I4 I5

WB I1 I2 - I4 I5

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1

(I2) 100: J 304 IF2 ID2 EX2 MA2 WB2

(I3) 104: ADD IF3 - - - -

(I4) 304: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

-  pipeline bubble

8

I1 096 ADD
I2 100 BEQ x1,x2 +200
I3 104 ADD
I4 300 ADD

BEQ?

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M

PCSrc (pc+4 / jabs / rind / br)

bubble

IRSrcD

Branch condition is not known until the
execute stage

what action should be taken in the
decode stage ?

A

Y ALU

Taken?

9

I1 096 ADD
I2 100 BEQ x1,x2 +200
I3 104 ADD
I4 300 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M

PCSrc (pc+4 / jabs / rind / br)

bubble

IRSrcD

A

Y ALU

Taken?

If the branch is taken
- kill the two following instructions
- the instruction at the decode stage is

not valid  stall signal is not valid

I2 I1

108
I3

Bcond?

?

10

I1: 096 ADD
I2: 100 BEQ x1,x2 +200
I3: 104 ADD
I4: 300 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M

PCSrc (pc+4/jabs/rind/br)

bubble A

Y ALU

Taken?

I2 I1

108
I3

Bcond?

Jump?

IRSrcD

IRSrcE

If the branch is taken
- kill the two following instructions
- the instruction at the decode stage is

not valid  stall signal is not valid
A

d
d

PC

PC

11

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 - I5
EX I1 I2 - - I5

MA I1 I2 - - I5

WB I1 I2 - - I5

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1

(I2) 100: BEQ +200 IF2 ID2 EX2 MA2 WB2

(I3) 104: ADD IF3 ID3 - - -

(I4) 108: IF4 - - - -

(I5) 300: ADD IF5 ID5 EX5 MA5 WB5

Resource
Usage

-  pipeline bubble

12

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 - I4 I5
EX I1 I2 - I4 I5

MA I1 I2 - I4 I5

WB I1 I2 - I4 I5

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1

(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2

(I3) 104: ADD IF3 - - - -

(I4) 300: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

-  pipeline bubble

 Change the ISA semantics so that the instruction that

follows a jump or branch is always executed

 gives compiler the flexibility to put in a useful

instruction where normally a pipeline bubble would

have resulted.

13

I1 096 ADD
I2 100 BEQZ r1, +200
I3 104 ADD
I4 300 ADD

Delay slot instruction

executed regardless of

branch outcome

14

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4
ID I1 I2 I3 I4
EX I1 I2 I3 I4

MA I1 I2 I3 I4

WB I1 I2 I3 I4

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1

(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2

(I3) 104: ADD IF3 ID3 EX3 MA3 WB3

(I4) 300: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

 Encodes microarchitectural detail into ISA

 C.f. IBM 650 drum layout

 Performance issues

 E.g., I-cache miss on delay slot causes machine to wait, even if delay slot is a

NOP

 Complicates more advanced microarchitectures

 30-stage pipeline with four-instruction-per-cycle issue

 Better branch prediction reduced need

15

 Full bypassing may be too expensive to implement

 typically all frequently used paths are provided

 some infrequently used bypass paths may increase cycle

time and counteract the benefit of reducing CPI

 Loads have two-cycle latency

 Instruction after load cannot use load result

 MIPS-I ISA defined load delay slots, a software-visible pipeline

hazard (compiler schedules independent instruction or

inserts NOP to avoid hazard). Removed in MIPS-II (pipeline

interlocks added in hardware)

 MIPS:“Microprocessor without Interlocked Pipeline Stages”

 Conditional branches may cause bubbles

 kill following instruction(s) if no delay slots

16

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler. NOPs
increase instructions/program!

17

Instruction Taken known? Target known?
J
JR
B<cond.>

Each instruction fetch depends on one or two pieces of
information from the preceding instruction:
 1) Is the preceding instruction a taken branch?
 2) If so, what is the target address?

After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

After Execute

18

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch Direction
&
Jump Register
Target Known

 Software solutions

 Eliminate branches - loop unrolling

 Increases the run length

 Reduce resolution time - instruction scheduling

 Compute the branch condition as early as possible (of limited value because branches

often in critical path through code)

 Hardware solutions

 Find something else to do - delay slots

 Replaces pipeline bubbles with useful work (requires software cooperation)

 Speculate - branch prediction

 Speculative execution of instructions beyond the branch

19

20

Motivation:
Branch penalties limit performance of deeply pipelined
processors
Modern branch predictors have high accuracy
(>95%) and can reduce branch penalties significantly

Required hardware support:

Prediction structures:
• Branch history tables, branch target buffers, etc.

Mispredict recovery mechanisms:

• Keep result computation separate from commit
• Kill instructions following branch in pipeline
• Restore state to that following branch

21

Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches, e.g.,
Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64
 typically reported as ~80% accurate

backward
90%

forward
50%

Temporal correlation

 The way a branch resolves may be a good predictor of the

way it will resolve at the next execution

Spatial correlation

 Several branches may resolve in a highly correlated manner

(a preferred path of execution)

22

23

• Assume 2 BP bits per instruction
• Change the prediction after two consecutive mistakes!

¬take
wrong

taken
¬ taken

taken

taken

taken

¬take
right

take
right

take
wrong

¬ taken

¬ taken ¬ taken

BP state:
 (predict take/¬take) x (last prediction right/wrong)

24

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

25

History register, H, records the direction of the
last N branches executed by the processor

if (x[i] < 7) then

 y += 1;

if (x[i] < 5) then

 c -= 4;

If first condition false, second condition also
false

26

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Shift in Taken/¬Taken
results of each branch

2-bit global branch history
shift register

Taken/¬Taken?

An alternative to branch prediction is to

execute both directions of a branch

speculatively

 resource requirement is proportional to the number

of concurrent speculative executions

 only half the resources engage in useful work when

both directions of a branch are executed speculatively

 branch prediction takes less resources than

speculative execution of both paths

With accurate branch prediction, it is

more cost effective to dedicate all

resources to the predicted direction!

27

28

Only predicts branch direction. Therefore, cannot redirect fetch stream until
after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly predicted

taken branch
penalty

Jump Register
penalty

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

29

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
Later: check prediction, if wrong then kill the instruction and
update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPb predicted

target BP

 target

30

What will be fetched after the instruction at 1028?
 BTB prediction =
 Correct target =

Assume a
128-entry
BTB

BPb target

take 236

1028 Add

132 Jump +104

Instruction
Memory

236
1032

kill PC=236 and fetch PC=1032

 Is this a common occurrence?
 Can we avoid these bubbles?

31

 BTB contains useful information for branch and jump
instructions only

 Do not update it for other instructions

 For all other instructions the next PC is PC+4 !

 How to achieve this effect without decoding the instruction?

32

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

 BTB entries are considerably more expensive than BHT, but

can redirect fetches at earlier stage in pipeline and can

accelerate indirect branches (JR)

 BHT can hold many more entries and is more accurate

33

A PC Generation/Mux

P Instruction Fetch Stage 1

F Instruction Fetch Stage 2

B Branch Address Calc/Begin Decode

I Complete Decode

J Steer Instructions to Functional units

R Register File Read

E Integer Execute

BTB

BHT BHT in later
pipeline stage
corrects when
BTB misses a
predicted taken
branch

BTB/BHT only updated after branch resolves in E stage

 Switch statements (jump to address of matching case)

 Dynamic function call (jump to run-time function address)

 Subroutine returns (jump to return address)

34

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in virtual
function call)

BTB works well if usually return to the same place

  Often one function called from many distinct call sites!

Small structure to accelerate JR for subroutine returns,

typically much more accurate than BTBs.

35

&fb()

&fc()

Push call address when
function call executed

Pop return address when
subroutine return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)

36

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt
handler

An external or internal event that needs to be processed by another (system)
program. The event is usually unexpected or rare from program’s point of view.

37

 Asynchronous: an external event

 input/output device service-request

 timer expiration

 power disruptions, hardware failure

 Synchronous: an internal event (a.k.a. traps or exceptions)

 undefined opcode, privileged instruction

 arithmetic overflow, FPU exception

 misaligned memory access

 virtual memory exceptions: page faults,

 TLB misses, protection violations

 system calls, e.g., jumps into kernel

Interrupt: an event that requests the attention of the processor

First system with exceptions was Univac-I,

1951

 Arithmetic overflow would either

 1. trigger the execution a two-instruction fix-up routine

at address 0, or

 2. at the programmer's option, cause the computer to

stop

 Later Univac 1103, 1955, modified to add external

interrupts

 Used to gather real-time wind tunnel data

First system with I/O interrupts was

DYSEAC, 1954

 Had two program counters, and I/O signal caused switch

between two PCs

 Also, first system with DMA (direct memory access by I/O

device)
38

[Courtesy Mark Smotherman]

39

• Carried in two tractor trailers, 12 tons + 8 tons

• Built for US Army Signal Corps
[Courtesy Mark Smotherman]

 An I/O device requests attention by asserting one of the

prioritized interrupt request lines

 When the processor decides to process the interrupt

 It stops the current program at instruction I
i
,

completing all the instructions up to I
i-1

 (precise

interrupt)

 It saves the PC of instruction I
i
 in a special register

(EPC)

 It disables interrupts and transfers control to a

designated interrupt handler running in the kernel

mode

40

 Saves EPC before enabling interrupts to allow nested interrupts 

 need an instruction to move EPC into GPRs

 need a way to mask further interrupts at least until EPC can be saved

 Needs to read a status register that indicates the cause of the interrupt

 Uses a special indirect jump instruction RFE (return-from-exception) which

 enables interrupts

 restores the processor to the user mode

 restores hardware status and control state

41

 A synchronous interrupt (exception) is caused by a

particular instruction

 In general, the instruction cannot be completed and

needs to be restarted after the exception has been

handled

 requires undoing the effect of one or more partially

executed instructions

 In the case of a system call trap, the instruction is

considered to have been completed

 a special jump instruction involving a change to

privileged kernel mode

42

 How to handle multiple simultaneous exceptions

in different pipeline stages?

 How and where to handle external asynchronous

interrupts?

43

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

Asynchronous Interrupts

44

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se

EP
C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

 Hold exception flags in pipeline until commit point (M stage)

 Exceptions in earlier pipe stages override later exceptions for a given

instruction

 Inject external interrupts at commit point (override others)

 If exception at commit: update Cause and EPC registers, kill all stages,

inject handler PC into fetch stage

45

Prediction mechanism

 Exceptions are rare, so simply predicting no exceptions

is very accurate!

Check prediction mechanism

 Exceptions detected at end of instruction execution

pipeline, special hardware for various exception types

Recovery mechanism

 Only write architectural state at commit point, so can

throw away partially executed instructions after

exception

 Launch exception handler after flushing pipeline

Bypassing allows use of uncommitted

instruction results by following

instructions
46

47

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 - I5
EX I1 I2 - - I5

MA I1 - - - I5

WB - - - - I5

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!

(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Exc. Handler code IF5 ID5 EX5 MA5 WB5

Resource
Usage

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

48

