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Systems 

 Lecture 3 - From CISC to 
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Last Time in Lecture 2 

•  ISA is the hardware/software interface 

• Defines set of  programmer visible state 

• Defines instruction format (bit encoding) and instruction semantics 

• Examples: IBM 360, MIPS, RISC-V, x86, JVM 

•  Many possible implementations of  one ISA 

• 360 implementations: model 30 (c. 1964), z12 (c. 2012) 

• x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486, Pentium, Pentium Pro, Pentium-4 (c. 2000), Core 2 Duo, Nehalem, Sandy 
Bridge, Ivy Bridge, Atom, AMD Athlon, Transmeta Crusoe, SoftPC 

• MIPS implementations: R2000, R4000, R10000, R18K, … 

• JVM: HotSpot, PicoJava, ARM Jazelle, … 

• Microcoding: straightforward methodical way to implement machines with low logic gate count and complex instructions 
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• Instructions per program depends on source code, compiler 

technology, and ISA 

• Cycles per instructions (CPI) depends on ISA and 

µarchitecture 

• Time per cycle depends upon the µarchitecture and base 

technology 
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      Time     =   Instructions         Cycles            Time 
   Program         Program     *  Instruction   *  Cycle “Iron Law” of  Processor Performance 



Inst 3 CPI for Microcoded Machine 
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7 cycles 

Inst 1 Inst 2 

5 cycles 10 cycles 

Total clock cycles = 7+5+10 = 22 
Total instructions = 3 
CPI = 22/3 = 7.33  
CPI is always an average over a large 
number of instructions. 

Time 



Technology Influence 

• When microcode appeared in 50s, different technologies for: 

• Logic: Vacuum Tubes 

• Main Memory: Magnetic cores 

• Read-Only Memory: Diode matrix, punched metal cards,… 

• Logic very expensive compared to ROM or RAM 

• ROM cheaper than RAM 

• ROM much faster than RAM 
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But seventies brought advances in integrated circuit 
technology and semiconductor memory… 
 



First Microprocessor 

Intel 4004, 1971 

• 4-bit accumulator 

architecture 

• 8µm pMOS 

• 2,300 transistors 

• 3 x 4 mm2 

• 750kHz clock 

• 8-16 cycles/inst. 

6 Made possible by new integrated circuit technology 



Microprocessors in the Seventies 

• Initial target was embedded control 

• First micro, 4-bit 4004 from Intel, designed for a desktop printing calculator 

• Constrained by what could fit on single chip 

• Accumulator architectures, similar to earliest computers 

• Hardwired state machine control 
 

• 8-bit micros (8085, 6800, 6502) used in hobbyist personal computers 

• Micral, Altair, TRS-80, Apple-II 

• Usually had 16-bit address space (up to 64KB directly addressable) 

• Often came with simple BASIC language interpreter built into ROM or loaded from cassette tape. 
 

7 



VisiCalc – the first “killer” 

app for micros 

• Microprocessors had little 
impact on conventional 
computer market until 

VisiCalc spreadsheet for 
Apple-II 

• Apple-II used Mostek 6502 
microprocessor running at 

1MHz 
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[ Personal Computing Ad, 1979 ] 

Floppy disks were originally 
invented by IBM as a way of 
shipping IBM 360 microcode 
patches to customers! 



DRAM in the Seventies 

• Dramatic progress in semiconductor memory technology 

 

• 1970, Intel introduces first DRAM, 1Kbit 1103 

 

• 1979, Fujitsu introduces 64Kbit DRAM 

 

=> By mid-Seventies, obvious that PCs would soon have >64KBytes physical memory 
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Microprocessor Evolution 

• Rapid progress in 70s, fueled by advances in MOSFET technology and expanding markets 

• Intel i432 

• Most ambitious seventies’ micro; started in 1975 - released 1981 

• 32-bit capability-based object-oriented architecture 

• Instructions variable number of bits long 

• Severe performance, complexity, and usability problems 

• Motorola 68000 (1979, 8MHz, 68,000 transistors) 

• Heavily microcoded (and nanocoded) 

• 32-bit general-purpose register architecture (24 address pins) 

• 8 address registers, 8 data registers 

• Intel 8086 (1978, 8MHz, 29,000 transistors) 

• “Stopgap” 16-bit processor, architected in 10 weeks 

• Extended accumulator architecture, assembly-compatible with 8080 

• 20-bit addressing through segmented addressing scheme 
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IBM PC, 1981 

• Hardware 

• Team from IBM building PC prototypes in 1979 

• Motorola 68000 chosen initially, but 68000 was late 

• IBM builds “stopgap” prototypes using 8088 boards from Display Writer word processor 

• 8088 is 8-bit bus version of 8086 => allows cheaper system 

• Estimated sales of 250,000 

• 100,000,000s sold 

• Software 

• Microsoft negotiates to provide OS for IBM.  Later buys and modifies QDOS from Seattle Computer Products. 

• Open System 

• Standard processor, Intel 8088 

• Standard interfaces 

• Standard OS, MS-DOS 

• IBM permits cloning and third-party software 
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12 [ Personal Computing Ad, 11/81] 



Microprogramming: early Eighties 

• Evolution bred more complex micro-machines 

• Complex instruction sets led to need for subroutine and call stacks in µcode 

• Need for fixing bugs in control programs was in conflict with read-only nature of  µROM  

• Writable Control Store (WCS)  (B1700, QMachine, Intel i432, …) 

• With the advent of  VLSI technology assumptions about ROM & RAM speed 
became invalid more complexity 

• Better compilers made complex instructions less important. 

• Use of  numerous micro-architectural innovations, e.g., pipelining, caches and 
buffers, made multiple-cycle execution of  reg-reg instructions unattractive 
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Analyzing Microcoded Machines 

• John Cocke and group at IBM 

• Working on a simple pipelined processor, 801, and advanced compilers inside IBM 

• Ported experimental PL.8 compiler to IBM 370, and only used simple register-register and load/store instructions similar to 801 

• Code ran faster than other existing compilers that used all 370 instructions! (up to 6MIPS whereas 2MIPS considered good before) 

• Emer, Clark, at DEC 

• Measured VAX-11/780 using external hardware 

• Found it was actually a 0.5MIPS machine, although usually assumed to be a 1MIPS machine 

• Found 20% of  VAX instructions responsible for 60% of  microcode, but only account for 0.2% of  execution time! 

• VAX8800 

• Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM 

•  4.5x more microstore RAM than cache RAM! 
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IC Technology Changes Tradeoffs 

• Logic, RAM, ROM all implemented using MOS transistors 

• Semiconductor RAM ~ same speed as ROM 
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Nanocoding 
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• MC68000 had 17-bit µcode containing either 10-bit µjump or 9-bit 
nanoinstruction pointer 

• Nanoinstructions were 68 bits wide, decoded to give 196 control 
signals 

µcode ROM 

nanoaddress 

µcode  
next-state 

µaddress 

PC (state) 

nanoinstruction ROM 
data 

Exploits recurring control 
signal patterns in µcode, 
e.g.,  
 
ALU0 A  Reg[rs1]  
... 
ALUi0 A  Reg[rs1] 
... 



From CISC to RISC 

• Use fast RAM to build fast instruction cache of  user-visible instructions, not fixed 
hardware microroutines 

• Contents of  fast instruction memory change to fit what application needs right now 

• Use simple ISA to enable hardwired pipelined implementation 

• Most compiled code only used a few of  the available CISC instructions 

• Simpler encoding allowed pipelined implementations 

• Further benefit with integration 

• In early ‘80s, could finally fit 32-bit datapath + small caches on a single chip 

• No chip crossings in common case allows faster operation 
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Berkeley RISC 

Chips 
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RISC-I (1982) Contains 44,420 
transistors, fabbed in 5 µm NMOS, 
with a die area of 77 mm2, ran at 
1 MHz. This chip is probably the 
first VLSI RISC. 

RISC-II (1983) contains 40,760 
transistors, was fabbed in 3 
µm NMOS, ran at 3 MHz, and 
the size is 60 mm2.  

Stanford built some too… 



• Instructions per program depends on source code, compiler 

technology, and ISA 

• Cycles per instructions (CPI) depends on ISA and 

µarchitecture 

• Time per cycle depends upon the µarchitecture and base 

technology 
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      Time     =   Instructions         Cycles            Time 
   Program         Program     *  Instruction   *  Cycle “Iron Law” of  Processor Performance 

Microarchitecture CPI cycle time 

Microcoded >1 short 

Single-cycle unpipelined 1 long 

Pipelined 1 short 

This lecture 



Hardware Elements 
• Combinational circuits 

• Mux, Decoder, ALU, ... 

• Synchronous state elements 
– Flipflop, Register, Register file, SRAM, DRAM 

Edge-triggered: Data is sampled at the rising edge 
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Register Files 

• Reads are combinational 
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Register File Implementation 

• RISC-V integer instructions have at most 2 register source 

operands  
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A Simple Memory Model 

23 

MAGIC 
 RAM 

ReadData 

WriteData 

Address 

WriteEnable 

Clock 

Reads and writes are always completed in one cycle 
• a Read can be done any time (i.e. combinational) 
• a Write is performed at the rising clock edge 
   if it is enabled      
   the write address and data 
        must be stable at the clock edge 
 

Later in the course we will present a more realistic model of memory 



Implementing RISC-V 

Single-cycle per instruction 

datapath & control logic 

(Should be review of  CS61C) 
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Instruction Execution 

Execution of  an instruction involves 

 

1. Instruction fetch 

2. Decode and register fetch 

3. ALU operation 

4. Memory operation (optional) 

5. Write back (optional) 

 

and compute address of  next instruction 

 
25 



Datapath: Reg-Reg ALU Instructions 
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RegWrite Timing? 
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Datapath: Reg-Imm ALU Instructions 
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     5   5               12        3       7 
    rd  rs1     immediate12  func  opcode     rd  (rs1) op immediate 

31         27 26    22 21                        10 9     7 6              0 
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Conflicts in Merging Datapath 
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Datapath for ALU Instructions 
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<16:0> 
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Load/Store Instructions 
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WBSel 

ALU / Mem 

rs1 is the base register 
rd is the destination of a Load, rs2 is the data source for a Store 
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     5    5  5       7       3        7                      Addressing Mode 
  imm   rs1 rs2   imm  func3  opcode   Store     (rs) + displacement 



RISC-V Conditional Branches 

• Compare two integer registers for equality (BEQ/BNE) or 

signed magnitude (BLT/BGE) or unsigned magnitude 

(BLTU/BGEU) 

• 12-bit immediate encodes branch target address as a signed 

offset from PC, in units of  16-bits (i.e., shift left by 1 then 

add to PC). 
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Conditional Branches (BEQ/BNE/BLT/BGE/BLTU/BGEU) 
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RISC-V Unconditional Jumps 

• 25-bit immediate encodes jump target address as a signed 

offset from PC, in units of  16-bits (i.e., shift left by 1 then 

add to PC). (+/- 16MB) 

• JAL is a subroutine call that also saves return address 

(PC+4) in register x1 
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RISC-V Register Indirect Jumps 

• Jumps to target address given by adding 12-bit offset (not 

shifted by 1 bit) to register rs1 

• The return address (PC+4) is written to rd (can be x0 if  

value not needed) 

• The RDNPC instruction simply writes return address to 

register rd without jumping (used for dynamic linking) 
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Full RISCV1Stage Datapath (Lab1) 
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Hardwired Control is pure 

Combinational Logic  
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combinational  
logic 

op code 

Equal? 
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Op2Sel 
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MemWrite 
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RegWriteEn 
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ALU Control & Immediate Extension 
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Inst<6:0> (Opcode)  

Decode Map 

Inst<16:7> (Func) 

ALUop 

0? 

+ 

FuncSel 

( Func, Op, +, 0? ) 

ImmSel 

( IType12, BsType12, 
  BrType12) 



Hardwired Control Table 
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Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel 

ALU 

ALUi 

LW 

SW 

BEQtrue 

BEQfalse 

J 

JAL 

JALR 

Op2Sel= Reg / Imm   WBSel = ALU / Mem / PC     
WASel = rd / X1    PCSel = pc+4 / br / rind / jabs  

* * * no yes rind PC rd 

jabs * * * no yes PC X1  

jabs * * * no no * * 

pc+4 BrType12 * * no no * * 

br BrType12 * * no no * * 

pc+4 BsType12 Imm + yes no * * 

pc+4 * Reg Func no yes ALU rd 

IType12 Imm Op pc+4 no yes ALU rd 

pc+4 IType12 Imm + no yes Mem rd 



Single-Cycle Hardwired Control 

 We will assume clock period is sufficiently long for all of  the following steps to be “completed”: 

1. Instruction fetch 

2. Decode and register fetch 

3. ALU operation 

4. Data fetch if  required 

5. Register write-back setup time 

 

   tC >  tIFetch + tRFetch + tALU+ tDMem+ tRWB 

 

 At the rising edge of  the following clock, the PC, register file and memory are updated 
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Summary 

• Microcoding became less attractive as gap between RAM and ROM speeds reduced, and logic implemented 
in same technology as memory 

• Complex instruction sets difficult to pipeline, so difficult to increase performance as gate count grew 

• Iron Law explains architecture design space 

• Trade instruction/program, cycles/instruction, and time/cycle 

• Load-Store RISC ISAs designed for efficient pipelined implementations 

• Very similar to vertical microcode 

• Inspired by earlier Cray machines (CDC 6600/7600) 

• RISC-V ISA will be used in lectures, problems, and labs 

• Berkeley RISC chips: RISC-I, RISC-II, SOAR (RISC-III), SPUR (RISC-IV) 
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