

Architecture of Computer

Systems

 Lecture 3 - From CISC to

RISC

Last Time in Lecture 2

• ISA is the hardware/software interface

• Defines set of programmer visible state

• Defines instruction format (bit encoding) and instruction semantics

• Examples: IBM 360, MIPS, RISC-V, x86, JVM

• Many possible implementations of one ISA

• 360 implementations: model 30 (c. 1964), z12 (c. 2012)

• x86 implementations: 8086 (c. 1978), 80186, 286, 386, 486, Pentium, Pentium Pro, Pentium-4 (c. 2000), Core 2 Duo, Nehalem, Sandy
Bridge, Ivy Bridge, Atom, AMD Athlon, Transmeta Crusoe, SoftPC

• MIPS implementations: R2000, R4000, R10000, R18K, …

• JVM: HotSpot, PicoJava, ARM Jazelle, …

• Microcoding: straightforward methodical way to implement machines with low logic gate count and complex instructions

2

• Instructions per program depends on source code, compiler

technology, and ISA

• Cycles per instructions (CPI) depends on ISA and

µarchitecture

• Time per cycle depends upon the µarchitecture and base

technology

3

 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle “Iron Law” of Processor Performance

Inst 3 CPI for Microcoded Machine

4

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles

Total clock cycles = 7+5+10 = 22
Total instructions = 3
CPI = 22/3 = 7.33
CPI is always an average over a large
number of instructions.

Time

Technology Influence

• When microcode appeared in 50s, different technologies for:

• Logic: Vacuum Tubes

• Main Memory: Magnetic cores

• Read-Only Memory: Diode matrix, punched metal cards,…

• Logic very expensive compared to ROM or RAM

• ROM cheaper than RAM

• ROM much faster than RAM

5

But seventies brought advances in integrated circuit
technology and semiconductor memory…

First Microprocessor

Intel 4004, 1971

• 4-bit accumulator

architecture

• 8µm pMOS

• 2,300 transistors

• 3 x 4 mm2

• 750kHz clock

• 8-16 cycles/inst.

6 Made possible by new integrated circuit technology

Microprocessors in the Seventies

• Initial target was embedded control

• First micro, 4-bit 4004 from Intel, designed for a desktop printing calculator

• Constrained by what could fit on single chip

• Accumulator architectures, similar to earliest computers

• Hardwired state machine control

• 8-bit micros (8085, 6800, 6502) used in hobbyist personal computers

• Micral, Altair, TRS-80, Apple-II

• Usually had 16-bit address space (up to 64KB directly addressable)

• Often came with simple BASIC language interpreter built into ROM or loaded from cassette tape.

7

VisiCalc – the first “killer”

app for micros

• Microprocessors had little
impact on conventional
computer market until

VisiCalc spreadsheet for
Apple-II

• Apple-II used Mostek 6502
microprocessor running at

1MHz

8

[Personal Computing Ad, 1979]

Floppy disks were originally
invented by IBM as a way of
shipping IBM 360 microcode
patches to customers!

DRAM in the Seventies

• Dramatic progress in semiconductor memory technology

• 1970, Intel introduces first DRAM, 1Kbit 1103

• 1979, Fujitsu introduces 64Kbit DRAM

=> By mid-Seventies, obvious that PCs would soon have >64KBytes physical memory

9

Microprocessor Evolution

• Rapid progress in 70s, fueled by advances in MOSFET technology and expanding markets

• Intel i432

• Most ambitious seventies’ micro; started in 1975 - released 1981

• 32-bit capability-based object-oriented architecture

• Instructions variable number of bits long

• Severe performance, complexity, and usability problems

• Motorola 68000 (1979, 8MHz, 68,000 transistors)

• Heavily microcoded (and nanocoded)

• 32-bit general-purpose register architecture (24 address pins)

• 8 address registers, 8 data registers

• Intel 8086 (1978, 8MHz, 29,000 transistors)

• “Stopgap” 16-bit processor, architected in 10 weeks

• Extended accumulator architecture, assembly-compatible with 8080

• 20-bit addressing through segmented addressing scheme

10

IBM PC, 1981

• Hardware

• Team from IBM building PC prototypes in 1979

• Motorola 68000 chosen initially, but 68000 was late

• IBM builds “stopgap” prototypes using 8088 boards from Display Writer word processor

• 8088 is 8-bit bus version of 8086 => allows cheaper system

• Estimated sales of 250,000

• 100,000,000s sold

• Software

• Microsoft negotiates to provide OS for IBM. Later buys and modifies QDOS from Seattle Computer Products.

• Open System

• Standard processor, Intel 8088

• Standard interfaces

• Standard OS, MS-DOS

• IBM permits cloning and third-party software

11

12 [Personal Computing Ad, 11/81]

Microprogramming: early Eighties

• Evolution bred more complex micro-machines

• Complex instruction sets led to need for subroutine and call stacks in µcode

• Need for fixing bugs in control programs was in conflict with read-only nature of µROM

• Writable Control Store (WCS) (B1700, QMachine, Intel i432, …)

• With the advent of VLSI technology assumptions about ROM & RAM speed
became invalid more complexity

• Better compilers made complex instructions less important.

• Use of numerous micro-architectural innovations, e.g., pipelining, caches and
buffers, made multiple-cycle execution of reg-reg instructions unattractive

13

Analyzing Microcoded Machines

• John Cocke and group at IBM

• Working on a simple pipelined processor, 801, and advanced compilers inside IBM

• Ported experimental PL.8 compiler to IBM 370, and only used simple register-register and load/store instructions similar to 801

• Code ran faster than other existing compilers that used all 370 instructions! (up to 6MIPS whereas 2MIPS considered good before)

• Emer, Clark, at DEC

• Measured VAX-11/780 using external hardware

• Found it was actually a 0.5MIPS machine, although usually assumed to be a 1MIPS machine

• Found 20% of VAX instructions responsible for 60% of microcode, but only account for 0.2% of execution time!

• VAX8800

• Control Store: 16K*147b RAM, Unified Cache: 64K*8b RAM

• 4.5x more microstore RAM than cache RAM!

14

IC Technology Changes Tradeoffs

• Logic, RAM, ROM all implemented using MOS transistors

• Semiconductor RAM ~ same speed as ROM

15

Nanocoding

16

• MC68000 had 17-bit µcode containing either 10-bit µjump or 9-bit
nanoinstruction pointer

• Nanoinstructions were 68 bits wide, decoded to give 196 control
signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

PC (state)

nanoinstruction ROM
data

Exploits recurring control
signal patterns in µcode,
e.g.,

ALU0 A Reg[rs1]
...
ALUi0 A Reg[rs1]
...

From CISC to RISC

• Use fast RAM to build fast instruction cache of user-visible instructions, not fixed
hardware microroutines

• Contents of fast instruction memory change to fit what application needs right now

• Use simple ISA to enable hardwired pipelined implementation

• Most compiled code only used a few of the available CISC instructions

• Simpler encoding allowed pipelined implementations

• Further benefit with integration

• In early ‘80s, could finally fit 32-bit datapath + small caches on a single chip

• No chip crossings in common case allows faster operation

17

Berkeley RISC

Chips

18

RISC-I (1982) Contains 44,420
transistors, fabbed in 5 µm NMOS,
with a die area of 77 mm2, ran at
1 MHz. This chip is probably the
first VLSI RISC.

RISC-II (1983) contains 40,760
transistors, was fabbed in 3
µm NMOS, ran at 3 MHz, and
the size is 60 mm2.

Stanford built some too…

• Instructions per program depends on source code, compiler

technology, and ISA

• Cycles per instructions (CPI) depends on ISA and

µarchitecture

• Time per cycle depends upon the µarchitecture and base

technology

19

 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle “Iron Law” of Processor Performance

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

This lecture

Hardware Elements
• Combinational circuits

• Mux, Decoder, ALU, ...

• Synchronous state elements
– Flipflop, Register, Register file, SRAM, DRAM

Edge-triggered: Data is sampled at the rising edge

Clk

D

Q

En
ff

Q

D

Clk

En

OpSelect
 - Add, Sub, ...
 - And, Or, Xor, Not, ...
 - GT, LT, EQ, Zero, ...

Result

Comp?

A

B

ALU

Sel

O

A0

A1

An-1

Mux . . .

lg(n)

A

D
ec

o
d

er

. . .

O0

O1

On-1

lg(n)

Register Files

• Reads are combinational

21

ReadData1 ReadSel1
ReadSel2

 WriteSel

Register
file

2R+1W

ReadData2

 WriteData

WE Clock

rd1 rs1

rs2

ws

wd

rd2

we

ff

Q0

D0

Clk

En
ff

Q1

D1

ff

Q2

D2

ff

Qn-1

Dn-1

...

...

...

register

Register File Implementation

• RISC-V integer instructions have at most 2 register source

operands

22

reg 31

rd clk

reg 1

wdata

we

rs1
rdata1 rdata2

reg 0

…

32

…

5 32 32

…

rs2 5
5

A Simple Memory Model

23

MAGIC
 RAM

ReadData

WriteData

Address

WriteEnable

Clock

Reads and writes are always completed in one cycle
• a Read can be done any time (i.e. combinational)
• a Write is performed at the rising clock edge
 if it is enabled
 the write address and data
 must be stable at the clock edge

Later in the course we will present a more realistic model of memory

Implementing RISC-V

Single-cycle per instruction

datapath & control logic

(Should be review of CS61C)

24

Instruction Execution

Execution of an instruction involves

1. Instruction fetch

2. Decode and register fetch

3. ALU operation

4. Memory operation (optional)

5. Write back (optional)

and compute address of next instruction

25

Datapath: Reg-Reg ALU Instructions

26

RegWrite Timing?

 5 5 5 10 7
 rd rs1 rs2 func opcode rd  (rs1) func (rs2)

31 27 26 22 21 17 16 7 6 0

0x4

Add

clk

addr
inst

Inst.

Memory

PC

Inst<26:22>
Inst<21:17>

Inst<31:27>

Inst<16:0>

OpCode

ALU

ALU

Control

RegWriteEn

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

we

Datapath: Reg-Imm ALU Instructions

27

 5 5 12 3 7
 rd rs1 immediate12 func opcode rd  (rs1) op immediate

31 27 26 22 21 10 9 7 6 0

Imm
Select

ImmSel

inst<21:10>

OpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC
ALU

RegWriteEn

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

we inst<26:22>

inst<31:27>

inst<9:0> ALU
Control

Conflicts in Merging Datapath

28

Imm
Select

ImmSel OpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

we inst<26:22>

Inst<31:27>

Inst<21:10>

Inst<16:0> ALU
Control Inst<9:0>

Introduce
muxes

 rd rs1 immediate12 func3 opcode rd  (rs1) op immediate

 5 5 5 10 7
 rd rs1 rs2 func10 opcode rd  (rs1) func (rs2)

Inst<21:17>

Datapath for ALU Instructions

29

<16:0>

 rd rs1 immediate12 func3 opcode rd  (rs1) op immediate

 5 5 5 10 7
 rd rs1 rs2 func10 opcode rd  (rs1) func (rs2)

Op2Sel

Reg / Imm

Imm
Select

ImmSel OpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC
ALU

RegWriteEn

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

we <26:22>

<21:17>

FuncSel

ALU
Control

<31:27>

<6:0>

Load/Store Instructions

30

WBSel

ALU / Mem

rs1 is the base register
rd is the destination of a Load, rs2 is the data source for a Store

Op2Sel

“base”

disp

ImmSel OpCode FuncSel

ALU
Control

ALU

0x4

Add

clk

addr
inst

Inst.

Memory

PC

RegWriteEn

clk

rd1

GPRs

rs1
rs2

wa
wd rd2

we

Imm
Select

clk

MemWrite

addr

wdata

rdata
Data

Memory

we

 rd rs1 immediate12 func3 opcode Load

 5 5 5 7 3 7 Addressing Mode
 imm rs1 rs2 imm func3 opcode Store (rs) + displacement

RISC-V Conditional Branches

• Compare two integer registers for equality (BEQ/BNE) or

signed magnitude (BLT/BGE) or unsigned magnitude

(BLTU/BGEU)

• 12-bit immediate encodes branch target address as a signed

offset from PC, in units of 16-bits (i.e., shift left by 1 then

add to PC).

31

7

6 0

opcode

3

9 7

func3

7

16 10

imm[6:0]

5

21 17

rs2

5

26 22

rs1

5

31 27

imm[11:7]

BEQ/BNE
BLT/BGE
BLTU/BGEU

Conditional Branches (BEQ/BNE/BLT/BGE/BLTU/BGEU)

32

0x4

Add

PCSel

clk

WBSel MemWrite

addr

wdata

rdata
Data

Memory

we

Op2Sel ImmSel OpCode

Bcomp?

FuncSel

clk

clk

addr
inst

Inst.

Memory

PC rd1

GPRs

rs1
rs2

wa
wd rd2

we

Imm

Select

ALU

ALU
Control

Add

br

pc+4

RegWrEn

Br Logic

RISC-V Unconditional Jumps

• 25-bit immediate encodes jump target address as a signed

offset from PC, in units of 16-bits (i.e., shift left by 1 then

add to PC). (+/- 16MB)

• JAL is a subroutine call that also saves return address

(PC+4) in register x1

33

J
JAL

7

6 0

opcode

25

31 7

Jump Offset[24:0]

RISC-V Register Indirect Jumps

• Jumps to target address given by adding 12-bit offset (not

shifted by 1 bit) to register rs1

• The return address (PC+4) is written to rd (can be x0 if

value not needed)

• The RDNPC instruction simply writes return address to

register rd without jumping (used for dynamic linking)

34

7

6 0

opcode

3

9 7

func3

12

21 10

Imm[11:0]

5

26 22

rs1

JALR

RDNPC

5

31 27

rd

Full RISCV1Stage Datapath (Lab1)

35

Hardwired Control is pure

Combinational Logic

36

combinational
logic

op code

Equal?

ImmSel

Op2Sel

FuncSel

MemWrite

WBSel

WASel

RegWriteEn

PCSel

ALU Control & Immediate Extension

37

Inst<6:0> (Opcode)

Decode Map

Inst<16:7> (Func)

ALUop

0?

+

FuncSel

(Func, Op, +, 0?)

ImmSel

(IType12, BsType12,
 BrType12)

Hardwired Control Table

38

Opcode ImmSel Op2Sel FuncSel MemWr RFWen WBSel WASel PCSel

ALU

ALUi

LW

SW

BEQtrue

BEQfalse

J

JAL

JALR

Op2Sel= Reg / Imm WBSel = ALU / Mem / PC
WASel = rd / X1 PCSel = pc+4 / br / rind / jabs

* * * no yes rind PC rd

jabs * * * no yes PC X1

jabs * * * no no * *

pc+4 BrType12 * * no no * *

br BrType12 * * no no * *

pc+4 BsType12 Imm + yes no * *

pc+4 * Reg Func no yes ALU rd

IType12 Imm Op pc+4 no yes ALU rd

pc+4 IType12 Imm + no yes Mem rd

Single-Cycle Hardwired Control

 We will assume clock period is sufficiently long for all of the following steps to be “completed”:

1. Instruction fetch

2. Decode and register fetch

3. ALU operation

4. Data fetch if required

5. Register write-back setup time

 tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB

 At the rising edge of the following clock, the PC, register file and memory are updated

39

Summary

• Microcoding became less attractive as gap between RAM and ROM speeds reduced, and logic implemented
in same technology as memory

• Complex instruction sets difficult to pipeline, so difficult to increase performance as gate count grew

• Iron Law explains architecture design space

• Trade instruction/program, cycles/instruction, and time/cycle

• Load-Store RISC ISAs designed for efficient pipelined implementations

• Very similar to vertical microcode

• Inspired by earlier Cray machines (CDC 6600/7600)

• RISC-V ISA will be used in lectures, problems, and labs

• Berkeley RISC chips: RISC-I, RISC-II, SOAR (RISC-III), SPUR (RISC-IV)

40

Acknowledgements

• These slides contain material developed and copyright by:

• Arvind (MIT)

• Krste Asanovic (MIT/UCB)

• Joel Emer (Intel/MIT)

• James Hoe (CMU)

• John Kubiatowicz (UCB)

• David Patterson (UCB)

• MIT material derived from course 6.823

• UCB material derived from course CS252

41

