
Architecture of Computer Systems 
 

 Lecture 2 - Simple Machine Implementations 



Last Time in Lecture 1 
• Computer Architecture >> ISAs and RTL 

• CS152 is about interaction of hardware and software, and design of 
appropriate abstraction layers 

• Technology and Applications shape Computer Architecture 
• History provides lessons for the future 

• First 130 years of CompArch, from Babbage to IBM 360 
• Move from calculators (no conditionals) to fully programmable 

machines 

• Rapid change started in WWII (mid-1940s), move from electro-
mechanical to pure electronic processors 

• Cost of software development becomes a large constraint on 
architecture (need compatibility) 

• IBM 360 introduces notion of “family of machines” running 
same ISA but very different implementations 
• Six different machines released on same day (April 7, 1964) 

• “Future-proofing” for subsequent generations of machine 2 



IBM 360: Initial Implementations 
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           Model 30 . . .   Model 70 

 Memory  8K - 64 KB   256K - 512 KB 

 Datapath 8-bit   64-bit 

 Circuit Delay 30 nsec/level  5 nsec/level 

 Local Store Main Store  Transistor Registers 

 Control Store Read only 1 sec Conventional circuits 

 

IBM 360 instruction set architecture (ISA) completely hid the 
underlying technological differences between various models. 

Milestone: The first true ISA designed as portable hardware-
software interface! 
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IBM 360 Survives 
Today: 
z12 Mainframe 
Processor 

[From IBM HotChips24 presentation, August 28, 2012] 

6 Cores @ 5.5 GHz 

Special-purpose 
coprocessors on 
each core 

32nm SOI Technology 
2.75 billion transistors 
23.7mm x 25.2mm 
15 layers of metal 
7.68 miles of wiring! 
10,000 power pins (!) 
   1,071 I/O pins 

48MB of Level-3 
cache on chip 



Instruction Set Architecture (ISA) 
• The contract between software and hardware 

• Typically described by giving all the programmer-
visible state (registers + memory) plus the semantics of 
the instructions that operate on that state 

• IBM 360 was first line of machines to separate ISA 
from implementation (aka. microarchitecture) 

• Many implementations possible for a given ISA 
• E.g., the Soviets build code-compatible clones of the 

IBM360, as did Amdahl after he left IBM. 
• E.g.2., today you can buy AMD or Intel processors that run 

the x86-64 ISA. 
• E.g.3: many cellphones use the ARM ISA with 

implementations from many different companies including 
TI, Qualcomm, Samsung, Marvell, etc. 
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ISA to Microarchitecture Mapping 

• ISA often designed with particular microarchitectural style in mind, e.g., 
– Accumulator  hardwired, unpipelined 
– CISC  microcoded 
– RISC  hardwired, pipelined 
– VLIW   fixed-latency in-order parallel pipelines 
– JVM   software interpretation 

• But can be implemented with any microarchitectural style 
– Intel Ivy Bridge: hardwired pipelined CISC (x86) machine (with some microcode 

support) 
– Simics: Software-interpreted SPARC RISC machine 
– ARM Jazelle: A hardware JVM processor 
– This lecture: a microcoded RISC-V machine 
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Today, Microprogramming 
•To show how to build very small processors with 

complex ISAs 

•To help you understand where CISC* machines came 
from 

•Because still used in common machines (IBM360, x86, 
PowerPC) 

•As a gentle introduction into machine structures 

•To help understand how technology drove the move to 
RISC* 

 
 

* “CISC”/”RISC” names much newer than style of machines they refer to. 
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Microarchitecture: Implementation of an ISA 
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Structure:  How components are connected.  
                                                Static 
Behavior:   How data moves between components  
                                                Dynamic 

Controller 

Data 
path 

Control 
Points Status 

lines 



Microcontrol Unit  Maurice Wilkes, 1954      
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Embed the 
control logic 
state table in a 
memory array 

First used in EDSAC-2, 
completed 1958 

Matrix A Matrix B 

Decoder 

Next state 

op      conditional 
code   flip-flop 

µaddress 

Control lines  to 
ALU, MUXs, Registers 

Memory 



Microcoded Microarchitecture 
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Memory 
(RAM) 

Datapath 

mcontroller 
(ROM) 

Addr Data 

zero? 
busy? 

opcode 

enMem 
MemWrt 

holds fixed 
microcode instructions  

holds user program 
written in macrocode 

instructions (e.g., x86,  
RISC-V, etc.) 



RISC-V ISA • New RISC design from UC Berkeley 

• Realistic & complete ISA, but open & small 

• Not over-architected for a certain implementation style 

• Both 32-bit and 64-bit address space variants 
• RV32 and RV64 

• Designed for multiprocessing 

• Efficient instruction encoding 

• Easy to subset/extend for education/research 

• Techreport with RISC-V spec available on class website 

 

• We’ll be using 32-bit RISC-V this semester in lectures and 
labs, very similar to MIPS you saw in CS61C 
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RV32 Processor State 
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Program counter (pc) 
 
32x32-bit integer registers (x0-x31) 
• x0 always contains a 0 
 
32 floating-point (FP) registers (f0-f31) 
• each can contain a single- or double-
precision FP value (32-bit or 64-bit 
IEEE FP) 

 
FP status register (fsr), used for FP 
rounding mode & exception reporting 

 

 



RISC-V Instruction Encoding 

• Can support variable-length instructions. 
• Base instruction set (RV32) always has fixed 32-bit 

instructions lowest two bits = 112 

• All branches and jumps have targets at 16-bit 
granularity (even in base ISA where all instructions are 
fixed 32 bits) 
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RISC-V Instruction Formats 
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Destination 
Reg. Reg. 

Source 1 

Reg. 
Source 2 

7-bit opcode 
field (but low 2 
bits =112) 

Additional 
opcode 
bits/immediat
e 



R-Type/I-Type/R4-Type Formats 
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Reg. Source 3 

12-bit signed immediate 

Reg-Reg ALU operations 

Reg-Imm ALU operations 
Load instructions, (rs1 + immediate) addressing 

Only used for floating-point 
fused multiply-add 



B-Type 
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12-bit signed immediate split across two fields 

Branches, compare two registers, PC+(immediate<<1) target 
 (Branches do not have delay slot) 
Store instructions, (rs1 + immediate) addressing, rs2 data 



L-Type 
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Writes 20-bit immediate to top of destination register. 
Used to build large immediates. 
12-bit immediates are signed, so have to account for sign when 
building 32-bit immediates in 2-instruction sequence (LUI high-
20b, ADDI low-12b) 



J-Type 

18 

“J” Unconditional jump, PC+offset target 
“JAL” Jump and link, also writes PC+4 to x1 
 
Offset scaled by 1-bit left shift – can jump to 16-bit 
instruction boundary (Same for branches) 



Data Formats and Memory Addresses 
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Data formats:       

8-b Bytes, 16-b Half words, 32-b words and 64-b double words 

Some issues 

• Byte addressing 
 

 

 

• Word alignment  
Suppose the memory is organized in 32-bit words. 

Can a word address begin only at 0, 4, 8, .... ? 

     0         1           2          3          4           5           6          7  

Most Significant 
Byte 

Least Significant 
Byte 

Byte Addresses 

3 2 1 0 

0 1 2 3 Big Endian 

Little Endian 



A Bus-based Datapath for RISC-V 
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Microinstruction: register to register transfer  (17 control signals) 
   MA  PC     means   RegSel = PC;   enReg=yes;    ldMA= yes 

B  Reg[rs2] means 

enMem 

MA 

addr 

data 

ldMA 

Memory 

busy 

MemWrt 

Bus 32 

zero? 

 A  B 

ALUOp ldA ldB 

ALU 

enALU 

RegWrt 

enReg 

addr 

data 

rs1 
rs2 
rd 

32(PC) 
1(RA) 

RegSel 

32 GPRs 
+ PC ... 

 
32-bit Reg 
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rs1 
rs2 
rd 

ImmSel 

IR 

Opcode 

ldIR 

Immed 
Select 

enImm 

2 

RegSel = rs2;   enReg=yes;   ldB   = yes 



Memory Module 
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Assumption: Memory operates independently 
and is slow as compared to Reg-to-Reg transfers 
(multiple CPU clock cycles per access) 

Enable 

Write(1)/Read(0) 
RAM 

din dout 

we 

addr busy 

bus 



Instruction Execution 
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Execution of a RISC-V instruction involves: 
 

1. instruction fetch 
2. decode and register fetch 
3. ALU operation 
4. memory operation (optional) 
5. write back to register file (optional) 
 + the computation of the  
     next instruction address 



Microprogram Fragments 
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instr fetch:  MA, A  PC 
 PC  A + 4 
 IR  Memory 
 dispatch on Opcode 

can be 
treated as 
a macro 

ALU:    A  Reg[rs1] 
 B  Reg[rs2]  
 Reg[rd]   func(A,B) 
 do instruction fetch 

ALUi:    A  Reg[rs1] 
 B  Imm  sign extension 
 Reg[rd]  Opcode(A,B) 
 do instruction fetch 



Microprogram Fragments (cont.) 
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LW:    A  Reg[rs1] 
 B  Imm 
 MA  A + B 
 Reg[rd]  Memory 
 do instruction fetch  
 

J:    A  A - 4             Get original PC back in A 
 B  IR 
 PC  JumpTarg(A,B) 
 do instruction fetch  
 

beq:  A  Reg[rs1] 
  B  Reg[rs2] 
  If A==B then go to bz-taken 
  do instruction fetch  
 

bz-taken:  A  PC 
  A  A - 4  Get original PC back in A 

 B  BImm << 1 BImm = IR[31:27,16:10] 
 PC  A + B 
 do instruction fetch  

JumpTarg(A,B) =  
{A + (B[31:7]<<1)} 



RISC-V Microcontroller: first attempt 

pure ROM implementation 
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next 
state 

PC (state) 

Opcode 
zero? 

Busy (memory) 

Control Signals (17) 

s 

s 

7 

Program ROM 

addr 

data 

= 2(opcode+status+s) words 

How big is 
“s”? 

ROM size ? 

Word size ? 
= control+s bits 



Microprogram in the ROM worksheet 
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State     Op       zero?         busy     Control points       next-state 
 
fetch0   * * * MA,A  PC   fetch1 
fetch1   * * yes         ....   fetch1 

fetch1   * * no  IR  Memory  fetch2 

fetch2      * * *  PC  A + 4   ? 
 
 
 
 
 
ALU0 * * *  A  Reg[rs1]   ALU1 
ALU1  * * *  B  Reg[rs2]   ALU2 
ALU2  * * *  Reg[rd]  func(A,B) fetch0 

fetch2   ALU * *  PC  A + 4   ALU0 



Microprogram in the ROM 
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State  Op     zero?     busy        Control points  next-state 
 

fetch0   * * * MA,A  PC   fetch1 
fetch1   * * yes         ....   fetch1 

fetch1   * * no  IR  Memory  fetch2 

fetch2  ALU * *  PC  A + 4   ALU0 
fetch2  ALUi * *  PC  A + 4   ALUi0 

fetch2  LW * *  PC  A + 4   LW0 
fetch2  SW * *  PC  A + 4   SW0 
fetch2  J  * *  PC  A + 4   J0 

fetch2  JAL * *  PC  A + 4   JAL0 

fetch2  JR * *  PC  A + 4   JR0 

fetch2  JALR * *  PC  A + 4   JALR0 

fetch2  beq * *  PC  A + 4   beq0  
 ... 
ALU0 * * *  A  Reg[rs1]   ALU1 
ALU1  * * *  B  Reg[rs2]   ALU2 
ALU2  * * *  Reg[rd]  func(A,B) fetch0 



Microprogram in the ROM Cont. 
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State  Op       zero?           busy        Control points     next-state 
 

ALUi0 * * *  A  Reg[rs1]   ALUi1 
ALUi1  * * *  B  Imm  ALUi2 

ALUi2  * * *  Reg[rd]  Op(A,B) fetch0 
... 
J0   * * * A  A - 4  J1 

J1   * * * B  IR   J2 

J2   * * * PC  JumpTarg(A,B) fetch0 
 ... 
beq0   * * *  A  Reg[rs1]  beq1 

beq1   * * *  B  Reg[rs2]  beq2 

beq2   * yes * A  PC    beq3 

beq2   * no *        ....   fetch0 

beq3   * * * A   A - 4  beq4 

beq4   * * * B  BImm  beq5 

beq5   * * * PC  A+B  fetch0 
 ... 
    



Size of Control Store 
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RISC-V:   w = 5+2   c = 17  s = ? 
no. of steps per opcode = 4 to 6 + fetch-sequence 
no. of states  (4 steps per op-group ) x op-groups  
     + common sequences 
        = 4 x 8 + 10 states = 42 states  s = 6 

      Control ROM = 2(5+6) x 23 bits  24 Kbytes 

size = 2(w+s) x (c + s)  Control ROM 

data 

status & opcode 

addr 

next PC 

Control signals 

 PC 

/ 
w 

/  s 

/  c 



Reducing Control Store Size  
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• Reduce the ROM height (= address bits) 
– reduce inputs by extra external logic 

each input bit doubles the size of the  
control store 

– reduce states by grouping opcodes  
find common sequences of actions 

– condense input status bits 
combine all exceptions into one, i.e., 
exception/no-exception 

 

• Reduce the ROM width 
– restrict the next-state encoding 

Next, Dispatch on opcode, Wait for memory, ... 
– encode control signals (vertical microcode) 

Control store has to be fast  expensive 



RISC-V Controller V2 

31 

JumpType = 
   next  | spin 
 | fetch | dispatch 
 | ftrue  | ffalse  

Control Signals (17) 

Control ROM 

address 

data 

+1  

Opcode ext 

PC (state) 

jump 
logic 

zero 

PC PC+1 

absolute 

op-group 

busy 

PCSrc 
input encoding reduces 

ROM height  

next-state encoding 
reduces ROM width  



Jump Logic 
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PCSrc = Case   JumpTypes 
 

next  PC+1 
 
spin  if (busy) then PC else PC+1  
 
fetch  absolute 
 
dispatch  op-group  
 
ftrue  if (zero) then absolute else PC+1 
  
ffalse  if (zero) then PC+1 else absolute 

 



Instruction Fetch & ALU: RISC-V-Controller-2 
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State    Control points         next-state 
 
fetch0   MA,A  PC    

fetch1    IR   Memory   

fetch2    PC  A + 4    
 ... 
ALU0  A    Reg[rs1]    
ALU1   B    Reg[rs2]    
ALU2   Reg[rd] func(A,B)  
 
ALUi0  A  Reg[rs1]    
ALUi1  B  Imm  
ALUi2   Reg[rd]  Op(A,B)  
 

next 
spin 
dispatch 

next 
next 
fetch 

next 
next 
fetch 



Load & Store: RISC-V-Controller-2 
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State    Control points           next-state 
 
LW0   A    Reg[rs1]  next  
LW1   B    Imm   next 
LW2  MA  A+B  next 
LW3  Reg[rd]  Memory spin 
LW4     fetch 
 
SW0   A    Reg[rs1]  next  
SW1   B    BImm  next 
SW2  MA  A+B  next 
SW3  Memory  Reg[rs2]  spin 
SW4     fetch 
 



Branches: RISC-V-Controller-2  
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State    Control points            next-state 
 
beq0    A  Reg[rs1]  next 
beq1    B  Reg[rs2]  next 

beq2    A  PC    ffalse  
beq3   A  A- 4  next 

beq3    B  BImm<<1    next 

beq4    PC  A+B  fetch 
 
  



Jumps: RISC-V-Controller-2 
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State    Control points         next-state 
 

J0    A    A-4  next 

J1    B    IR   next 

J2    PC  JumpTarg(A,B) fetch 
 

JR0    A     Reg[rs1]  next 
JR1    PC  A   fetch 
 

JAL0    A    PC   next  
JAL1    Reg[1]  A  next  
JAL2    A  A-4   next  
JAL3    B    IR   next 

JAL4    PC  JumpTarg(A,B) fetch 
 



VAX 11-780 Microcode 
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Implementing Complex Instructions 
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enMem 

MA 

addr 

data 

ldMA 

Memory 

busy 

MemWrt 

Bus 32 

zero? 

 A  B 

ALUOp ldA ldB 

ALU 

enALU 

RegWrt 

enReg 

addr 

data 

rs1 
rs2 
rd 

32(PC) 
1(RA) 

RegSel 

32 GPRs 
+ PC ... 

 
32-bit Reg 
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rs1 
rs2 
rd 

ImmSel 

IR 

Opcode 

ldIR 

Immed 
Select 

enImm 

2 

rd  M[(rs1)] op (rs2)   Reg-Memory-src ALU op  
M[(rd)]  (rs1) op (rs2)  Reg-Memory-dst ALU op  
M[(rd)]  M[(rs1)] op M[(rs2)] Mem-Mem ALU op 



Mem-Mem ALU Instructions:  
RISC-V-Controller-2 
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Mem-Mem ALU op          M[(rd)]  M[(rs1)] op M[(rs2)] 
 

ALUMM0  MA  Reg[rs1]  next 
ALUMM1 A    Memory  spin 
ALUMM2  MA  Reg[rs2]  next 
ALUMM3 B    Memory  spin 
ALUMM4  MA Reg[rd]   next 
ALUMM5 Memory  func(A,B) spin 
ALUMM6     fetch 
 

Complex instructions usually do not require datapath modifications in a 
microprogrammed implementation  
 -- only extra space for the control program 
 
Implementing these instructions using a hardwired controller is difficult 
without datapath modifications 



Performance Issues 
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Microprogrammed control  
   multiple cycles per instruction 
 

Cycle time ?  
tC > max(treg-reg, tALU, t ROM) 

 
 

Suppose  10 * t ROM < tRAM 

 
Good performance, relative to a single-cycle 
hardwired implementation, can be achieved 
even with a CPI of 10  



Horizontal vs Vertical mCode 

• Horizontal mcode has wider minstructions 
• Multiple parallel operations per minstruction 
• Fewer microcode steps per macroinstruction 
• Sparser encoding  more bits 

• Vertical mcode has narrower minstructions 
• Typically a single datapath operation per minstruction 

– separate minstruction for branches 

• More microcode steps per macroinstruction 
• More compact   less bits 

• Nanocoding 
• Tries to combine best of horizontal and vertical mcode 
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# µInstructions 

Bits per µInstruction 



Nanocoding 
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• MC68000 had 17-bit µcode containing either 10-bit 
µjump or 9-bit nanoinstruction pointer 
• Nanoinstructions were 68 bits wide, decoded to give 196 

control signals 

µcode ROM 

nanoaddress 

µcode  
next-state 

µaddress 

PC (state) 

nanoinstruction ROM 
data 

Exploits recurring control 
signal patterns in µcode, 
e.g.,  
 
ALU0 A  Reg[rs1]  
... 
ALUi0 A  Reg[rs1] 
... 



Microprogramming in IBM 360 

  Only the fastest models (75 and 95) were hardwired 
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M30 M40 M50 M65 

Datapath width (bits) 8 16 32 64 

µinst width (bits) 50 52 85 87 

µcode size (K µinsts) 4 4 2.75 2.75 

µstore technology CCROS TCROS BCROS BCROS 

µstore cycle (ns) 750 625 500 200 

memory cycle (ns) 1500 2500 2000 750 

Rental fee ($K/month) 4 7 15 35 



IBM Card Capacitor Read-Only 
Storage 
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[ IBM Journal, January 1961] 

Punched Card with 
metal film 

Fixed 
sensing 
plates 



Microcode Emulation 

• IBM initially miscalculated the importance of software 
compatibility with earlier models when introducing 
the 360 series 

• Honeywell stole some IBM 1401 customers by 
offering translation software (“Liberator”) for 
Honeywell H200 series machine 

• IBM retaliated with optional additional microcode for 
360 series that could emulate IBM 1401 ISA, later 
extended for IBM 7000 series 
• one popular program on 1401 was a 650 simulator, so some customers 

ran many 650 programs on emulated 1401s 
•  (650 simulated on 1401 emulated on 360) 
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Microprogramming thrived in the 
Seventies 
• Significantly faster ROMs than DRAMs were available 

• For complex instruction sets, datapath and controller 
were cheaper and simpler  

• New instructions , e.g., floating point, could be 
supported without datapath modifications 

• Fixing bugs in the controller was easier 

• ISA compatibility across various models could be 
achieved easily and cheaply 
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Except for the cheapest and fastest machines, all 
computers were microprogrammed 



 Writable Control Store (WCS) 
• Implement control store in RAM not ROM 

• MOS SRAM memories now almost as fast as control store (core 
memories/DRAMs were 2-10x slower) 

• Bug-free microprograms difficult to write 
 

• User-WCS provided as option on several 
minicomputers 
• Allowed users to change microcode for each processor 

 

• User-WCS failed 
• Little or no programming tools support 
• Difficult to fit software into small space 
• Microcode control tailored to original ISA, less useful for others 
• Large WCS part of processor state - expensive context switches 
• Protection difficult if user can change microcode 
• Virtual memory required restartable microcode 
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 Microprogramming is far from extinct 
• Played a crucial role in micros of the Eighties 

• DEC uVAX, Motorola 68K series, Intel 286/386 

• Plays an assisting role in most modern micros 
• e.g., AMD Bulldozer, Intel Ivy Bridge, Intel Atom, IBM 

PowerPC, … 
•  Most instructions executed directly, i.e., with hard-

wired control 
•  Infrequently-used and/or complicated instructions 

invoke microcode 
 

•  Patchable microcode common for post-fabrication 
bug fixes, e.g. Intel processors load µcode patches 
at bootup 
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