Architecture of Computer Systems

Lecture 2 - Simple Machine Implementations

Last Time In Lecture 1

 Computer Architecture >> ISAs and RTL

e CS152is about interaction of hardware and software, and design of
appropriate abstraction layers

Technology and Applications shape Computer Architecture
* History provides lessons for the future

First 130 years of CompArch, from Babbage to IBM 360

* Move from calculators (no conditionals) to fully programmable
machines

* Rapid change started in WWII (mid-1940s), move from electro-
mechanical to pure electronic processors
Cost of software development becomes a large constraint on
architecture (need compatibility)

IBM 360 introduces notion of “family of machines” running
same ISA but very different implementations

» Six different machines released on same day (April 7, 1964)
e “Future-proofing” for subsequent generations of machine

IBM 360: Initial Implementations

Model 30 - Model 70
Memory 8K - 64 KB 256K -512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store Main Store Transistor Registers
Control Store Read only 1Bsec Conventional circuits

IBM 360 instruction set architecture (ISA) completely hid the
underlying technological differences between various models.

Milestone: The first true ISA designed as portable hardware-
software interface!

IBM 360 Survives
Today:
6 Cores @ 3.96H%/] 3|
Process||-

Special-purpose
COProcessors on
each core

48MB of Level-3
cache on chip

0 |

32nm SOI Technology

2.75 billion transistors

23.7mm x 25.2mm

15 layers of metal

7.68 miles of wiring!

10,000 power pins (!)
1,071 1/0 pins

[From IBM HotChips24 presentation, August 28, 2012]

Instruction Set Architecture (ISA)

 The contract between software and hardware

 Typically described by giving all the programmer-
visible state (registers + memory) plus the semantics of

the instructions that operate on that state

* |IBM 360 was first line of machines to separate ISA
from implementation (aka. microarchitecture)

* Many implementations possible for a given ISA
* E.g., the Soviets build code-compatible clones of the
IBM360, as did Amdahl after he left IBM.
e E.g.2., today you can buy AMD or Intel processors that run
the x86-64 ISA.

* E.g.3: many cellphones use the ARM ISA with
implementations from many different companies including

Tl, Qualcomm, Samsung, Marvell, etc.

ISA to Microarchitecture Mapping

* |SA often designed with particular microarchitectural style in mind, e.g.,
— Accumulator = hardwired, unpipelined
— CISC —> microcoded
— RISC = hardwired, pipelined
— VLIW = fixed-latency in-order parallel pipelines
- JVM —> software interpretation

e But can be implemented with any microarchitectural style
— Intel lvy Bridge: hardwired pipelined CISC (x86) machine (with some microcode
support)
— Simics: Software-interpreted SPARC RISC machine
— ARM Jazelle: A hardware JVM processor
— This lecture: a microcoded RISC-V machine

TOd a°¥b sl}(o!/s: I!;cc))vp tg%girda vremers]rrllglgprocessors with

complex ISAs

* To help you understand where CISC* machines came
from

* Because still used in common machines (IBM360, x86,
PowerPC)

* As a gentle introduction into machine structures

* To help understand how technology drove the move to
RISC*

* “CISC”/”RISC” names much newer than style of machines they refer to.

Microarchitecture: Implementation of an ISA

Controller Control
Status Points
lines l l ‘l_
Data
C—p —) path

] I —

Structure: How components are connected.
Static

Behavior: How data moves between components
Dynamic

Microcontrol Unit maurice wilkes, 1954

op conditional

code flip-flop
/
First used in EDSAC-2,
completed 1958 /l/ Next state
Uaddress
1 Matrix A Matrix B
Embed the | | 4

control logic
state table in a
memory array

Decoder

Memory

Control lines to
ALU, MUXs, Registers

Microcoded Microarchitecture

> —] .
sera>| Meontroller (— holds fixed
: microcode instructions
opcode (ROM)
-
R 4 28R 2R ’
Datapath
Data Addr
holds user program Memory “enMem

written in macrocode ., (RAM) [‘Memwrt
instructions (e.q., x86,_j—)

RISC-V, etc.)

10

RISC_-\(IeI\ﬁfQ‘SC design from UC Berkeley

* Realistic & complete ISA, but open & small
* Not over-architected for a certain implementation style

Both 32-bit and 64-bit address space variants
 RV32 and RV64

e Designed for multiprocessing

* Efficient instruction encoding
 Easy to subset/extend for education/research
* Techreport with RISC-V spec available on class website

* We'll be using 32-bit RISC-V this semester in lectures and
labs, very similar to MIPS you saw in CS61C

RV32 Processor State

Program counter (pc)

32x32-bit integer registers (x0-x31)
* X0 always containsa 0

32 floating-point (FP) registers (f0-f31)
* each can contain a single- or double-
precision FP value (32-bit or 64-bit
IEEE FP)

FP status register (fsr), used for FP
rounding mode & exception reporting

XPRLEN-1

4

i

£0

£2
£3
fd
£6
£6
£7

g

£49

£10

£12

£13

£14

£156

f16

HiHH|H|H | H|H|HH
S| = B0 | G0 | &) G | bl | 5 B

£17

o
) e B A = L L e A e U=
=]} -

fig

£149

21

£20

2z

£21

23

£22

=2

f23

25

£2d

26
2T
x2i
x2k
x30
31

£25

XPRLEN-1

KPHLED

f26
£27
£28
£29
£30
£31

EC

KPRLED

Isr

By

12

RISC-V |Instruction Encoding

| xxxxxoxxxxxxaa | 16-bit (aa # 11)
| EEXOAAATAAXIAXAL | Xxxxxxxxxxxbbbll | 32-hit (bbb £ 111)

CETAX | TEACCETLXLXTENNEN | merxrrxxrxxliill | =52-hit
Byte Address: basedd base4-2 b

e Can support variable-length instructions.

e Base instruction set (RV32) always has fixed 32-bit
instructions lowest two bits = 11,

* All branches and jumps have targets at 16-bit
granularlty even in base ISA where all instructions are
ixed 32 bits)

13

RISC-V Instruction Formats

Destination Reg. Additional 7-bit opcode
Re Source 2 opcode field (but low 2
> Reg. bits/immediat bits =11,)

Source 1 o
| T DR \/ a9 2] LT 156 1AL11 LY = Tk il

rd ral rgd funct 10 n]':‘f:m:le H-type
rd ral rsd Faad functh apoode RAa-type
rd ral imm|[11:7 irmm | G=0)| functd opoode I-type
imm|11:7 ral 52 imm |G=0| functd apoode B-type
ri LUI immediate 19:0| apoode L-type
jump offset [24:0 opoode J-tvpe

R- Type/l Type/R4 -Type Formats

T 26 17 16 T 6
rd =l rEd funct10 . opeode
3| 3]] 1[) [

Reg-Reg ALU operations

ol v 2 22 2l 1T 16 L1y fa T & u

rd _ rsl | imm|11:7] | imm)|f:0)| | functd | opeode
5 i 5 S~ T 3 7
Reg-Imm ALU operations 12-bit signhed immediate

Load instructions, (rs1 + immediate) addressing

1 I 6

ri] _ rsl _ rsd _ T | functd | opeode
5 o o 3| 3! T
Only used for floating-point

, Reg. Source 3
fused multiply-add

15

12-bit signed immediate split across two fields

imm|11:7] rsl ' rsd ' irromm| G:0)| functd | opeode
5 o o i i [

Branches, compare two registers, PC+(immediate<<1) target
(Branches do not have delay slot)
Store instructions, (rs1 + immediate) addressing, rs2 data

L-Type

rd LUT immediate 19:0| oponde
3 2l]

Writes 20-bit immediate to top of destination register.
Used to build large immediates.
12-bit immediates are signed, so have to account for sign when

building 32-bit immediates in 2-instruction sequence (LUl high-
20b, ADDI low-12b)

J—Ty:jo

Jump offset|24:0|
20

IIJ 1

Unconditional jump, PC+offset target
“JAL” Jump and link, also writes PC+4 to x1

Offset scaled by 1-bit left shift — can jump to 16-bit
instruction boundary (Same for branches)

apcode
[

Data Formats and Memory Addresses

Data formats:
8-b Bytes, 16-b Half words, 32-b words and 64-b double words

Some issues
Most Significant Least Significant

e Byte addressing Byte Byte

Little Endian

e Word alignment

Byte Addresses
Suppose the memory is organized in 32-bit words.

Can a word address beginonly at0, 4, 8, ?

19

A Bus-based Data paem for RISC-V buy
IdIR — 3)(PC IdMA
o ALUOp i A))
=% : 2 \
o RegSel MA
y ¥ v v \ 2R / _|_/‘ﬁéL I
IR A B addr addr
l 32 GPRs
ImmSe - -
| Immed 5 V +PC... _ RegWit Memory | nemwrt
L ALY 32-bit Reg |.__enReg

PR
enlmm_K7 enALU_K7 data data enMem

Microinstruction: register to register transfer (17 control signals)
MA PC means RegSel = PC; enReg=yes; IdMA=yes
B Reg[rs2] means RegSel =rs2; enReg=yes; |dB =yes

20

Memory Module
|

addr busy
RAM we
din dout

_C

__ Write(1)/Read(0)

l

bus

Eates

Enable

Assumption: Memory operates independently
and is slow as compared to Reg-to-Reg transfers
(multiple CPU clock cycles per access)

Instruction Execution

Execution of a RISC-V instruction involves:

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)
+ the computation of the
next instruction address

22

I\/Iicropr_ogram Fragments
instr fetch: MA, A PC

PCEA+4 can be
IR @ Memory ,, treated as
dispatch on Opcode a macro

ALU: A [l Reg[rs1]
B [l Reg[rs2]
Reg[rd] B func(A,B)
do instruction fetch

ALUi: A [l Reg[rs1]
B Imm sign extension
Reg[rd] B Opcode(A,B)
do instruction fetch

Microprogram Fragmnrénts o,

beq:

bz-taken:

MARA+B
Reg[rd] Bl Memory
do instruction fetch

ABRA-4 Get original PC back in A
B IR
PCEl JumpTarg(A,B) JumpTarg(A,B) =

do instruction fetch

{A +(B[31:7]<<1)}

A [l Reg[rs1]

B [l Reg[rs2]

If A==B then go to bz-taken
do instruction fetch

A PC

ARA-4 Get original PC back in A
BEBImm<<1 Blmm =IR[31:27,16:10]
PCEIA+B

do instruction fetch

R|SC-V M ICFOCO ﬂtrO| |er first attempt

pure ROM implementation

Opcode
zero? T
Busy (memory)
BIPC (state)
s +
addr

ROM size ?
— 7(opcode+status+s) \words

Word size ?
= control+s bits

EIProgram ROM

data

1

How big is

an_ 7
?

S

next
state

Control Signals (17)

25

Microprogram in the ROM worksheet

State Op zero? busy |Control points next-state
fetch, * * * MA,A B PC fetch,
fetch, * * yes fetch,
fetch, * * no IR B Memory fetch,
fetch, * * * PCEIA+4 ?
fetch, ALU * * PCEA+4 ALU,
ALU, * * * A [Reg[rs1] ALU,
ALU, * * * B [Reg[rs2] ALU,
ALU, * * * Reg[rd] B func(A,B) fetch,

26

Microprogram in the ROM

State Op zero? busy Control points next-state
fetch, * * * MA,A B PC fetch,
fetch, * * yes fetch,
fetch, * * no IR B Memory fetch,
fetch, ALU * * PCEA+4 ALU,
fetch, ALUI * * PCEIA+4 ALUi,
fetch, LW * * PCEA+4 LW,
fetch, SW * ¥ PCEA+4 SW,
fetch, | * * PCEA+4 Jo
fetch, JAL * * PCEIA+4 JAL,
fetch, JR * * PCEA+4 IR,
fetch, JALR * * PCEIA+4 JALR,
fetch, beq * ¥ PCEA+4 beq,
ALU, * * * A B Reg[rs1] ALU,
ALU, ¥ * * B [Reg[rs2] ALU,
ALU, * * * Reg[rd] B func(A,B) fetch,

27

Microprogram in the ROM con

State Op zero? busy Control points next-state
ALUi, * * * A [l Reg[rs1] ALUi,
ALUi, * * * B B Imm ALUI,

ALUi, * * * Reg[rd]@ Op(A,B) fetch,

Jg * * * ABA-4 J,

l, * * * BE IR l,

J, * * * PCEl JumpTarg(A,B) fetch,
beq, * * * A [l Reg[rs1] beq,
beq, * * * B B Reg[rs2] beq,
beq, * yes * AR PC beq,
beq, * no * fetch,
beq, * * * AR A-4 beq,
beq, * * * B Blmm beq.
beq. * * * PCE A+B fetch,

28

Size of Control Store

status & opcode 7 l
W I FPC
addr {s
size = 2W*)x (¢ + s) Control ROM next BPC
data

Control signals 1/ C

RISC-V: w = 542 c=17 s=7?
no. of steps per opcode =4 to 6 + fetch-sequence
no. of states [(4 steps per op-group) X op-groups
+ common sequences
=4 x 8+ 10 states =42 states s =6
Control ROM = 2(5*6) x 23 bits & 24 Kbytes

29

Reducing Control Store Size

Control store has to be fast Pl expensive

e Reduce the ROM height (= address bits)

— reduce inputs by extra external logic
each input bit doubles the size of the
control store

— reduce states by grouping opcodes
find common sequences of actions

— condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

e Reduce the ROM width

— restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...

— encode control signals (vertical microcode)

30

RISC-V Controller V2

absolute
Opcode —| éext
oPEIoER | @PC |BPC+1
\ Z
// | /
input encoding reduces BPC ' +1
. state :
ROM height () 1 aPCSre
| zero
address busy
BlumpType = Control ROM
next | spin
| fetch | dispatch data
| ftrue | ffalse l l l l l l l

Control Signals (17)

.

next-state encoding
reduces ROM width

31

Jump Logic

EIPCSrc = Case EllumpTypes

nextel
spin
fetch
dispatch
ftrue

ffalse

if (busy) then else
if (zero) then

if (zero) then

else

else

32

Instructiondetch & Blbhistsc viomstsee

fetch, MA,AR PC

fetch, IR B Memory
fetch, PCRIA+4

ALU, A [l Reg|[rs1]
ALU, B [Reg[rs2]
ALU, Reg[rd]Efunc(A,B)
ALUi, A [Reg[rs1]
ALUi, BE Imm

ALUi, Reg[rd]@ Op(A,B)

next
spin
dispatch

next
next
fetch

next
next
fetch

33

Load & SBQ(EGZ RISC-VeGontrellesaints

LW,
LW,
LW,
LW,
LW,

SW,
SW,
SW,
SW,
SW,

A [Reg[rs1]

B Bl Imm

MA [Bl A+B

Reg[rd] Bl Memory

A [Reg[rs1]

B [EIBlmm

MA 2] A+B
Memory [l Reg[rs2]

next-state

next
next
next
spin

fetch

next
next
next
spin

fetch

34

B ra N C h e S . RISC-V-Controller-2

State Control points next-state
beq, A [l Reg[rsl] next
beq, B [l Reg[rs2] next
beq, AR PC ffalse

beq; ARA-4 next
beq; B B BImm<<1 next

beq, PCE A+B fetch

35

.J U m pS . RISC-V-Controller-2

State

JAL,
JAL,
JAL,
JAL,
JAL,

Control points

A BIA-4 next
B @AIR
PCE JumpTarg(A,B)

A Reg[rs1]
PCRA

A B PC

Reg[1] B A

AR A-4

B BIIR

PCE JumpTarg(A,B)

next-state

next
fetch

next
fetch

next
next
next
next
fetch

36

' PAWFUD,! '(600,1205) MICRO2 1F(12) 26eMay=81 1415811 VAX11/780 Microcode t PCS 01, FPLA OD, WCS122 ‘age 171
7 CALL2 ,Mic (600,1205) Procedure call t CALLG, CALLS :
123744 JHERE FOR CALLG OR CALLS, AFTER PROBING THE EXTENT OF THE STACK
129745
129746 =0 j**ececcccsnncsncnnnanancnncesne)CALL SITE FOR MPUSH
129747 CALL,7: D.Q,AND,RCI(T2), JSTRIP MASK TO BITS 11=0
6557K 0 11F4, 0811,2035,0180,F910,0000,0CD8 129748 CALL,J/MPUSH tPUSH REGISTERS
129749
129750 jercenannenanennesnaansssacencse)RETURN FROM MPUSH
129751 CACHE.D([LONG), JPUSH PC
6557K 7763K 11F5, 0000,003C,0180,3270,0000,134A 129752 LABLR[SP) } BY SP
129753
129754 jerecnncsccsnscnnsnncnsnnnannonne)
6856K 0 U 134A, 0018,0000,0180,FAF0,0200,134C 129755 CALL.8t RISP)&VALLA=K(,8) JUPDATE SP FOR PUSH OF PC &
129756
1297%7 jerecnonnccnnncnenncnnnessnannce)
6856K 0 U 134C, 0800,003C,0180,FA68,0000,11F8 129758 D-RLFP) JREADY TO PUSH FRAME POINTER
129799
129760 =0 joranconsccsononcccnnnnnnennsnss)CALL SITE FOR PSHSP
129761 CACHE.D[LONG),)STORE FP,
129762 LAB_R(SP),)} GET SP AGAIN
3 129763 SC.K[.FFFO), 1=16 TO S8C
6856K 21M 11F8, 0000,003D,6D80,3270,0084,6CD9 129764 CALL,J/PSHSP
129765
2129766 Jerneccnacsesnsnancsnccncunccnas]
? 129767 D.R(AP], JREADY TO PUSH AP
6856K 0 11F9, 0800,003C,3DF0,2E60,0000,134D 129768 Q.ID[PSL] ! AND GET PSW FOR COMBINATIO
29769
:29770 jeneconncanannessosnsancncanusnne)
129771 CACHELD(LONG), JSTORE OLD AP
; 129772 Q.0,ANDNOT,K(.1F), $CLEAR PSW<T,N,2,V,C>
6856K 21M 134D, 0019,2024,80C0,3270,0000,134E 129773 LAR_R[SP) JGET SP INTO LATCHES AGAIN
129774
22977% jrasnroncsssnnepnscesacasnnasenn ‘
6856K 0 134E, 2010,0038,0180,F909,4200,1350 129776 PC&VA.RC(T1], FLUSH,IB ? LOAD NEW PC AND CLEAR OUT
1297177
129778 jemsecrnnennnccscnsensenscansnen]
$129779 D.DAL,SC, JPSW TO D<31116>
129780 Q.RCIT2), JRECOVER MASK
129781 SC.8C+K([,.3), JPUT «13 IN SC
6856K 0 1350, 0D10,0038,0DC0,6114,0084,9351 129782 LOAD,IB, PC.PC+! JSTART FETCHING SUBROUTINE I
129783
129784 jerecccncscancannaccnnnacsacanane)
$12978S% D.DAL,.SC, JMASK AND PSW IN D<31:03>
129786 0.RC(T4), JGET LOW BITS OF OLD SP TO Q<1:0>
6856K 0 131, 0D10,0038,F5C0,F920,0084,9352 129787 SC.SC+K([,A) JPUT =3 IN SC
129788

37

Implementing Complex Instructions sy

IR ALUOp IdA ldB 32(PC) IdMA
g A
—>rs2 rs2
—rsl Ve rs1 J
o RegSel "MA
\ 4 A 4 v A vy Vv _I_/‘ﬁéL |
IR A B addr addr
l I I 32 GPRs
Im7rr£f —— \V +PC ... | Regwit Memory | nemWrt
2 Laded \ AL 32-bit Reg |.__enReg A
enlmm_K7 enALU_K7 data data enMem
| l Bus ,32
rd @ M[(rs1)] op (rs2) Reg-Memory-src ALU op
MI[(rd)] & (rs1) op (rs2) Reg-Memory-dst ALU op
MI[(rd)] & M[(rs1)] op M[(rs2)]Mem-Mem ALU op

38

Mem-Mem ALU Instructions:

RISC-V/-Controller-2

Mem-Mem ALU op MI(rd)] & M[(rs1)] op M[(rs2)]
ALUMM, MA [Reg[rs1] next
ALUMM;, A Bl Memory spin
ALUMM, MA [Reg[rs2] next
ALUMM, B B Memory spin
ALUMM, MA [BIReg|[rd] next
ALUMM, Memory Bl func(A,B) spin
ALUMM, fetch

Complex instructions usually do not require datapath modifications in a
microprogrammed implementation
-- only extra space for the control program

Implementing these instructions using a hardwired controller is difficult
without datapath modifications

Performance Issues

Microprogrammed control
multiple cycles per instruction

Cycle time ?
tc> max(treg-reg' taLur tarom)

Suppose 10 * torom < tram

Good performance, relative to a single-cycle
hardwired implementation, can be achieved
even with a CPl of 10

40

Horizontal vs VerticaltCode sis per pnstruction

plnstructions

I I v

* Horizontal pucode has wider uinstructions

* Multiple parallel operations per uinstruction
* Fewer microcode steps per macroinstruction
» Sparser encoding = more bits

* Vertical ucode has narrower pinstructions

* Typically a single datapath operation per pinstruction
— separate pinstruction for branches

* More microcode steps per macroinstruction
* More compact = less bits

* Nanocoding
* Tries to combine best of horizontal and vertical pcode

Nanocoding

Exploits recurring control
signal patterns in pcode,

e.g.,

ALU, AT Reg(rs1]

ALUi, AF[Reg(rs1]

BIPC (state)

ucode
next-state

pnaddress
Lcode ROM

nanoaddress

nanoinstruction ROM
data

NREREREN

control signals

* MC68000 had 17-bit pcode containing either 10-bit
Ljump or 9-bit nanoinstruction pointer
* Nanoinstructions were 68 bits wide, decoded to give 196

42

Microprogramming in IBM 360

M30 M40 M50 M65
Datapath width (bits) 8 16 32 64
pinst width (bits) 50 52 85 87
ncode size (K pinsts) 4 4 2.75 2.75
ustore technology CCROS| TCROS BCROS| BCROS
pstore cycle (ns) 750 625 500 200
memory cycle (ns) 1500 2500 2000 750
Rental fee (SK/month) 4 7 15 35

Only the fastest models (75 and 95) were hardwired

IBM Card Capacitor Read-Only

/

/ Fixed
~ sensing
olates

Microcode Emulation

* IBM initially miscalculated the importance of software
compatibility with earlier models when introducing
the 360 series

* Honeywell stole some IBM 1401 customers by
offering translation software (“Liberator”) for
Honeywell H200 series machine

* IBM retaliated with optional additional microcode for
360 series that could emulate IBM 1401 ISA, later
extended for IBM 7000 series

* one popular program on 1401 was a 650 simulator, so some customers
ran many 650 programs on emulated 1401s

(650 simulated on 1401 emulated on 360)

Microprogramming thrived in the
Seventies

Significantly faster ROMs than DRAMs were available

For complex instruction sets, datapath and controller
were cheaper and simpler

New instructions , e.g., floating point, could be
supported without datapath modifications

Fixing bugs in the controller was easier

ISA compatibility across various models could be
achieved easily and cheaply

Except for the cheapest and fastest machines, all
computers were microprogrammed

Writable Control Store (WCS)

* Implement control store in RAM not ROM
 MOS SRAM memories now almost as fast as control store (core
memories/DRAMs were 2-10x slower)
e Bug-free microprograms difficult to write

e User-WCS provided as option on several

minicomputers
* Allowed users to change microcode for each processor

e User-WCS failed

Little or no programming tools support

Difficult to fit software into small space

Microcode control tailored to original ISA, less useful for others
Large WCS part of processor state - expensive context switches
Protection difficult if user can change microcode

Virtual memory required restartable microcode

I\/Iicroppqacagammin% is far fr&ﬁ@g%ﬁtt!e@d

a crucial rofé in micros o |
 DEC uVAX, Motorola 68K series, Intel 286/386

* Plays an assisting role in most modern micros

* e.g., AMD Bulldozer, Intel Ivy Bridge, Intel Atom, IBM
PowerPC, ...

* Most instructions executed directly, i.e., with hard-
wired control

* |Infrequently-used and/or complicated instructions
invoke microcode

* Patchable microcode common for post-fabrication

bug fixes, e.g. Intel processors load pcode patches
at bootup

Acknowledgements

* These slides contain material developed and copyright by:
e Arvind (MIT)
e Krste Asanovic (MIT/UCB)
 Joel Emer (Intel/MIT)
e James Hoe (CMU)
e John Kubiatowicz (UCB)
* David Patterson (UCB)

e MIT material derived from course 6.823
e UCB material derived from course CS252

