
Architecture of Computer Systems

 Lecture 2 - Simple Machine Implementations

Last Time in Lecture 1
• Computer Architecture >> ISAs and RTL

• CS152 is about interaction of hardware and software, and design of
appropriate abstraction layers

• Technology and Applications shape Computer Architecture
• History provides lessons for the future

• First 130 years of CompArch, from Babbage to IBM 360
• Move from calculators (no conditionals) to fully programmable

machines

• Rapid change started in WWII (mid-1940s), move from electro-
mechanical to pure electronic processors

• Cost of software development becomes a large constraint on
architecture (need compatibility)

• IBM 360 introduces notion of “family of machines” running
same ISA but very different implementations
• Six different machines released on same day (April 7, 1964)

• “Future-proofing” for subsequent generations of machine 2

IBM 360: Initial Implementations

3

 Model 30 . . . Model 70

 Memory 8K - 64 KB 256K - 512 KB

 Datapath 8-bit 64-bit

 Circuit Delay 30 nsec/level 5 nsec/level

 Local Store Main Store Transistor Registers

 Control Store Read only 1 sec Conventional circuits

IBM 360 instruction set architecture (ISA) completely hid the
underlying technological differences between various models.

Milestone: The first true ISA designed as portable hardware-
software interface!

4

IBM 360 Survives
Today:
z12 Mainframe
Processor

[From IBM HotChips24 presentation, August 28, 2012]

6 Cores @ 5.5 GHz

Special-purpose
coprocessors on
each core

32nm SOI Technology
2.75 billion transistors
23.7mm x 25.2mm
15 layers of metal
7.68 miles of wiring!
10,000 power pins (!)
 1,071 I/O pins

48MB of Level-3
cache on chip

Instruction Set Architecture (ISA)
• The contract between software and hardware

• Typically described by giving all the programmer-
visible state (registers + memory) plus the semantics of
the instructions that operate on that state

• IBM 360 was first line of machines to separate ISA
from implementation (aka. microarchitecture)

• Many implementations possible for a given ISA
• E.g., the Soviets build code-compatible clones of the

IBM360, as did Amdahl after he left IBM.
• E.g.2., today you can buy AMD or Intel processors that run

the x86-64 ISA.
• E.g.3: many cellphones use the ARM ISA with

implementations from many different companies including
TI, Qualcomm, Samsung, Marvell, etc.

5

ISA to Microarchitecture Mapping

• ISA often designed with particular microarchitectural style in mind, e.g.,
– Accumulator  hardwired, unpipelined
– CISC  microcoded
– RISC  hardwired, pipelined
– VLIW  fixed-latency in-order parallel pipelines
– JVM  software interpretation

• But can be implemented with any microarchitectural style
– Intel Ivy Bridge: hardwired pipelined CISC (x86) machine (with some microcode

support)
– Simics: Software-interpreted SPARC RISC machine
– ARM Jazelle: A hardware JVM processor
– This lecture: a microcoded RISC-V machine

6

Today, Microprogramming
•To show how to build very small processors with

complex ISAs

•To help you understand where CISC* machines came
from

•Because still used in common machines (IBM360, x86,
PowerPC)

•As a gentle introduction into machine structures

•To help understand how technology drove the move to
RISC*

* “CISC”/”RISC” names much newer than style of machines they refer to.

7

Microarchitecture: Implementation of an ISA

8

Structure: How components are connected.
 Static
Behavior: How data moves between components
 Dynamic

Controller

Data
path

Control
Points Status

lines

Microcontrol Unit Maurice Wilkes, 1954

9

Embed the
control logic
state table in a
memory array

First used in EDSAC-2,
completed 1958

Matrix A Matrix B

Decoder

Next state

op conditional
code flip-flop

µaddress

Control lines to
ALU, MUXs, Registers

Memory

Microcoded Microarchitecture

10

Memory
(RAM)

Datapath

mcontroller
(ROM)

Addr Data

zero?
busy?

opcode

enMem
MemWrt

holds fixed
microcode instructions

holds user program
written in macrocode

instructions (e.g., x86,
RISC-V, etc.)

RISC-V ISA • New RISC design from UC Berkeley

• Realistic & complete ISA, but open & small

• Not over-architected for a certain implementation style

• Both 32-bit and 64-bit address space variants
• RV32 and RV64

• Designed for multiprocessing

• Efficient instruction encoding

• Easy to subset/extend for education/research

• Techreport with RISC-V spec available on class website

• We’ll be using 32-bit RISC-V this semester in lectures and
labs, very similar to MIPS you saw in CS61C

11

RV32 Processor State

12

Program counter (pc)

32x32-bit integer registers (x0-x31)
• x0 always contains a 0

32 floating-point (FP) registers (f0-f31)
• each can contain a single- or double-
precision FP value (32-bit or 64-bit
IEEE FP)

FP status register (fsr), used for FP
rounding mode & exception reporting

RISC-V Instruction Encoding

• Can support variable-length instructions.
• Base instruction set (RV32) always has fixed 32-bit

instructions lowest two bits = 112

• All branches and jumps have targets at 16-bit
granularity (even in base ISA where all instructions are
fixed 32 bits)

13

RISC-V Instruction Formats

14

Destination
Reg. Reg.

Source 1

Reg.
Source 2

7-bit opcode
field (but low 2
bits =112)

Additional
opcode
bits/immediat
e

R-Type/I-Type/R4-Type Formats

15

Reg. Source 3

12-bit signed immediate

Reg-Reg ALU operations

Reg-Imm ALU operations
Load instructions, (rs1 + immediate) addressing

Only used for floating-point
fused multiply-add

B-Type

16

12-bit signed immediate split across two fields

Branches, compare two registers, PC+(immediate<<1) target
 (Branches do not have delay slot)
Store instructions, (rs1 + immediate) addressing, rs2 data

L-Type

17

Writes 20-bit immediate to top of destination register.
Used to build large immediates.
12-bit immediates are signed, so have to account for sign when
building 32-bit immediates in 2-instruction sequence (LUI high-
20b, ADDI low-12b)

J-Type

18

“J” Unconditional jump, PC+offset target
“JAL” Jump and link, also writes PC+4 to x1

Offset scaled by 1-bit left shift – can jump to 16-bit
instruction boundary (Same for branches)

Data Formats and Memory Addresses

19

Data formats:

8-b Bytes, 16-b Half words, 32-b words and 64-b double words

Some issues

• Byte addressing

• Word alignment
Suppose the memory is organized in 32-bit words.

Can a word address begin only at 0, 4, 8, ?

 0 1 2 3 4 5 6 7

Most Significant
Byte

Least Significant
Byte

Byte Addresses

3 2 1 0

0 1 2 3 Big Endian

Little Endian

A Bus-based Datapath for RISC-V

20

Microinstruction: register to register transfer (17 control signals)
 MA PC means RegSel = PC; enReg=yes; ldMA= yes

B Reg[rs2] means

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

 A B

ALUOp ldA ldB

ALU

enALU

RegWrt

enReg

addr

data

rs1
rs2
rd

32(PC)
1(RA)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs1
rs2
rd

ImmSel

IR

Opcode

ldIR

Immed
Select

enImm

2

RegSel = rs2; enReg=yes; ldB = yes

Memory Module

21

Assumption: Memory operates independently
and is slow as compared to Reg-to-Reg transfers
(multiple CPU clock cycles per access)

Enable

Write(1)/Read(0)
RAM

din dout

we

addr busy

bus

Instruction Execution

22

Execution of a RISC-V instruction involves:

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. memory operation (optional)
5. write back to register file (optional)
 + the computation of the
 next instruction address

Microprogram Fragments

23

instr fetch: MA, A PC
 PC A + 4
 IR Memory
 dispatch on Opcode

can be
treated as
a macro

ALU: A Reg[rs1]
 B Reg[rs2]
 Reg[rd] func(A,B)
 do instruction fetch

ALUi: A Reg[rs1]
 B Imm sign extension
 Reg[rd] Opcode(A,B)
 do instruction fetch

Microprogram Fragments (cont.)

24

LW: A Reg[rs1]
 B Imm
 MA A + B
 Reg[rd] Memory
 do instruction fetch

J: A A - 4 Get original PC back in A
 B IR
 PC JumpTarg(A,B)
 do instruction fetch

beq: A Reg[rs1]
 B Reg[rs2]
 If A==B then go to bz-taken
 do instruction fetch

bz-taken: A PC
 A A - 4 Get original PC back in A

 B BImm << 1 BImm = IR[31:27,16:10]
 PC A + B
 do instruction fetch

JumpTarg(A,B) =
{A + (B[31:7]<<1)}

RISC-V Microcontroller: first attempt

pure ROM implementation

25

next
state

PC (state)

Opcode
zero?

Busy (memory)

Control Signals (17)

s

s

7

Program ROM

addr

data

= 2(opcode+status+s) words

How big is
“s”?

ROM size ?

Word size ?
= control+s bits

Microprogram in the ROM worksheet

26

State Op zero? busy Control points next-state

fetch0 * * * MA,A PC fetch1
fetch1 * * yes fetch1

fetch1 * * no IR Memory fetch2

fetch2 * * * PC A + 4 ?

ALU0 * * * A Reg[rs1] ALU1
ALU1 * * * B Reg[rs2] ALU2
ALU2 * * * Reg[rd] func(A,B) fetch0

fetch2 ALU * * PC A + 4 ALU0

Microprogram in the ROM

27

State Op zero? busy Control points next-state

fetch0 * * * MA,A PC fetch1
fetch1 * * yes fetch1

fetch1 * * no IR Memory fetch2

fetch2 ALU * * PC A + 4 ALU0
fetch2 ALUi * * PC A + 4 ALUi0

fetch2 LW * * PC A + 4 LW0
fetch2 SW * * PC A + 4 SW0
fetch2 J * * PC A + 4 J0

fetch2 JAL * * PC A + 4 JAL0

fetch2 JR * * PC A + 4 JR0

fetch2 JALR * * PC A + 4 JALR0

fetch2 beq * * PC A + 4 beq0
 ...
ALU0 * * * A Reg[rs1] ALU1
ALU1 * * * B Reg[rs2] ALU2
ALU2 * * * Reg[rd] func(A,B) fetch0

Microprogram in the ROM Cont.

28

State Op zero? busy Control points next-state

ALUi0 * * * A Reg[rs1] ALUi1
ALUi1 * * * B Imm ALUi2

ALUi2 * * * Reg[rd] Op(A,B) fetch0
...
J0 * * * A A - 4 J1

J1 * * * B IR J2

J2 * * * PC JumpTarg(A,B) fetch0
 ...
beq0 * * * A Reg[rs1] beq1

beq1 * * * B Reg[rs2] beq2

beq2 * yes * A PC beq3

beq2 * no * fetch0

beq3 * * * A A - 4 beq4

beq4 * * * B BImm beq5

beq5 * * * PC A+B fetch0
 ...

Size of Control Store

29

RISC-V: w = 5+2 c = 17 s = ?
no. of steps per opcode = 4 to 6 + fetch-sequence
no. of states (4 steps per op-group) x op-groups
 + common sequences
 = 4 x 8 + 10 states = 42 states s = 6

 Control ROM = 2(5+6) x 23 bits 24 Kbytes

size = 2(w+s) x (c + s) Control ROM

data

status & opcode

addr

next PC

Control signals

 PC

/
w

/ s

/ c

Reducing Control Store Size

30

• Reduce the ROM height (= address bits)
– reduce inputs by extra external logic

each input bit doubles the size of the
control store

– reduce states by grouping opcodes
find common sequences of actions

– condense input status bits
combine all exceptions into one, i.e.,
exception/no-exception

• Reduce the ROM width
– restrict the next-state encoding

Next, Dispatch on opcode, Wait for memory, ...
– encode control signals (vertical microcode)

Control store has to be fast expensive

RISC-V Controller V2

31

JumpType =
 next | spin
 | fetch | dispatch
 | ftrue | ffalse

Control Signals (17)

Control ROM

address

data

+1

Opcode ext

PC (state)

jump
logic

zero

PC PC+1

absolute

op-group

busy

PCSrc
input encoding reduces

ROM height

next-state encoding
reduces ROM width

Jump Logic

32

PCSrc = Case JumpTypes

next PC+1

spin if (busy) then PC else PC+1

fetch absolute

dispatch op-group

ftrue if (zero) then absolute else PC+1

ffalse if (zero) then PC+1 else absolute

Instruction Fetch & ALU: RISC-V-Controller-2

33

State Control points next-state

fetch0 MA,A PC

fetch1 IR Memory

fetch2 PC A + 4
 ...
ALU0 A Reg[rs1]
ALU1 B Reg[rs2]
ALU2 Reg[rd] func(A,B)

ALUi0 A Reg[rs1]
ALUi1 B Imm
ALUi2 Reg[rd] Op(A,B)

next
spin
dispatch

next
next
fetch

next
next
fetch

Load & Store: RISC-V-Controller-2

34

State Control points next-state

LW0 A Reg[rs1] next
LW1 B Imm next
LW2 MA A+B next
LW3 Reg[rd] Memory spin
LW4 fetch

SW0 A Reg[rs1] next
SW1 B BImm next
SW2 MA A+B next
SW3 Memory Reg[rs2] spin
SW4 fetch

Branches: RISC-V-Controller-2

35

State Control points next-state

beq0 A Reg[rs1] next
beq1 B Reg[rs2] next

beq2 A PC ffalse
beq3 A A- 4 next

beq3 B BImm<<1 next

beq4 PC A+B fetch

Jumps: RISC-V-Controller-2

36

State Control points next-state

J0 A A-4 next

J1 B IR next

J2 PC JumpTarg(A,B) fetch

JR0 A Reg[rs1] next
JR1 PC A fetch

JAL0 A PC next
JAL1 Reg[1] A next
JAL2 A A-4 next
JAL3 B IR next

JAL4 PC JumpTarg(A,B) fetch

VAX 11-780 Microcode

37

Implementing Complex Instructions

38

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

 A B

ALUOp ldA ldB

ALU

enALU

RegWrt

enReg

addr

data

rs1
rs2
rd

32(PC)
1(RA)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs1
rs2
rd

ImmSel

IR

Opcode

ldIR

Immed
Select

enImm

2

rd M[(rs1)] op (rs2) Reg-Memory-src ALU op
M[(rd)] (rs1) op (rs2) Reg-Memory-dst ALU op
M[(rd)] M[(rs1)] op M[(rs2)] Mem-Mem ALU op

Mem-Mem ALU Instructions:
RISC-V-Controller-2

39

Mem-Mem ALU op M[(rd)] M[(rs1)] op M[(rs2)]

ALUMM0 MA Reg[rs1] next
ALUMM1 A Memory spin
ALUMM2 MA Reg[rs2] next
ALUMM3 B Memory spin
ALUMM4 MA Reg[rd] next
ALUMM5 Memory func(A,B) spin
ALUMM6 fetch

Complex instructions usually do not require datapath modifications in a
microprogrammed implementation
 -- only extra space for the control program

Implementing these instructions using a hardwired controller is difficult
without datapath modifications

Performance Issues

40

Microprogrammed control
 multiple cycles per instruction

Cycle time ?
tC > max(treg-reg, tALU, t ROM)

Suppose 10 * t ROM < tRAM

Good performance, relative to a single-cycle
hardwired implementation, can be achieved
even with a CPI of 10

Horizontal vs Vertical mCode

• Horizontal mcode has wider minstructions
• Multiple parallel operations per minstruction
• Fewer microcode steps per macroinstruction
• Sparser encoding  more bits

• Vertical mcode has narrower minstructions
• Typically a single datapath operation per minstruction

– separate minstruction for branches

• More microcode steps per macroinstruction
• More compact  less bits

• Nanocoding
• Tries to combine best of horizontal and vertical mcode

41

µInstructions

Bits per µInstruction

Nanocoding

42

• MC68000 had 17-bit µcode containing either 10-bit
µjump or 9-bit nanoinstruction pointer
• Nanoinstructions were 68 bits wide, decoded to give 196

control signals

µcode ROM

nanoaddress

µcode
next-state

µaddress

PC (state)

nanoinstruction ROM
data

Exploits recurring control
signal patterns in µcode,
e.g.,

ALU0 A Reg[rs1]
...
ALUi0 A Reg[rs1]
...

Microprogramming in IBM 360

 Only the fastest models (75 and 95) were hardwired

43

M30 M40 M50 M65

Datapath width (bits) 8 16 32 64

µinst width (bits) 50 52 85 87

µcode size (K µinsts) 4 4 2.75 2.75

µstore technology CCROS TCROS BCROS BCROS

µstore cycle (ns) 750 625 500 200

memory cycle (ns) 1500 2500 2000 750

Rental fee ($K/month) 4 7 15 35

IBM Card Capacitor Read-Only
Storage

44
[IBM Journal, January 1961]

Punched Card with
metal film

Fixed
sensing
plates

Microcode Emulation

• IBM initially miscalculated the importance of software
compatibility with earlier models when introducing
the 360 series

• Honeywell stole some IBM 1401 customers by
offering translation software (“Liberator”) for
Honeywell H200 series machine

• IBM retaliated with optional additional microcode for
360 series that could emulate IBM 1401 ISA, later
extended for IBM 7000 series
• one popular program on 1401 was a 650 simulator, so some customers

ran many 650 programs on emulated 1401s
• (650 simulated on 1401 emulated on 360)

45

Microprogramming thrived in the
Seventies
• Significantly faster ROMs than DRAMs were available

• For complex instruction sets, datapath and controller
were cheaper and simpler

• New instructions , e.g., floating point, could be
supported without datapath modifications

• Fixing bugs in the controller was easier

• ISA compatibility across various models could be
achieved easily and cheaply

46

Except for the cheapest and fastest machines, all
computers were microprogrammed

 Writable Control Store (WCS)
• Implement control store in RAM not ROM

• MOS SRAM memories now almost as fast as control store (core
memories/DRAMs were 2-10x slower)

• Bug-free microprograms difficult to write

• User-WCS provided as option on several
minicomputers
• Allowed users to change microcode for each processor

• User-WCS failed
• Little or no programming tools support
• Difficult to fit software into small space
• Microcode control tailored to original ISA, less useful for others
• Large WCS part of processor state - expensive context switches
• Protection difficult if user can change microcode
• Virtual memory required restartable microcode

47

 Microprogramming is far from extinct
• Played a crucial role in micros of the Eighties

• DEC uVAX, Motorola 68K series, Intel 286/386

• Plays an assisting role in most modern micros
• e.g., AMD Bulldozer, Intel Ivy Bridge, Intel Atom, IBM

PowerPC, …
• Most instructions executed directly, i.e., with hard-

wired control
• Infrequently-used and/or complicated instructions

invoke microcode

• Patchable microcode common for post-fabrication
bug fixes, e.g. Intel processors load µcode patches
at bootup

48

Acknowledgements

• These slides contain material developed and copyright by:
• Arvind (MIT)

• Krste Asanovic (MIT/UCB)

• Joel Emer (Intel/MIT)

• James Hoe (CMU)

• John Kubiatowicz (UCB)

• David Patterson (UCB)

• MIT material derived from course 6.823

• UCB material derived from course CS252

49

