

2

T
im

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

 Definition of a supercomputer:

 Fastest machine in world at given task

 A device to turn a compute-bound problem into an I/O bound problem

 Any machine costing $30M+

 Any machine designed by Seymour Cray

 CDC6600 (Cray, 1964) regarded as first supercomputer

3

SEYMOUR CRAY

 A fast pipelined machine with 60-bit words

 128 Kword main memory capacity, 32

banks

 Ten functional units (parallel, unpipelined)

 Floating Point: adder, 2 multipliers,

divider

 Integer: adder, 2 incrementers, ...

 Hardwired control (no microcoding)

 Scoreboard for dynamic scheduling of

instructions

 Ten Peripheral Processors for Input/Output

 a fast multi-threaded 12-bit integer ALU

 Very fast clock, 10 MHz (FP add in 4 clocks)

 >400,000 transistors, 750 sq. ft., 5 tons,

150 kW, novel freon-based technology for

cooling

 Fastest machine in world for 5 years (until

7600)

 over 100 sold ($7-10M each)

4

3/10/2009

Thomas Watson Jr., IBM CEO, August 1963:

 “Last week, Control Data ... announced

the 6600 system. I understand that in the

laboratory developing the system there

are only 34 people including the janitor.

Of these, 14 are engineers and 4 are

programmers... Contrasting this modest

effort with our vast development

activities, I fail to understand why we

have lost our industry leadership

position by letting someone else offer the

world's most powerful computer.”

To which Cray replied: “It seems like Mr.

Watson has answered his own question.”

5

6

• Separate instructions to manipulate three types of reg.
 8 60-bit data registers (X)
 8 18-bit address registers (A)
 8 18-bit index registers (B)

•All arithmetic and logic instructions are reg-to-reg

•Only Load and Store instructions refer to memory!

 Touching address registers 1 to 5 initiates a load
 6 to 7 initiates a store

 - very useful for vector operations

opcode i j k Ri  (Rj) op (Rk)

opcode i j disp Ri  M[(Rj) + disp]

6 3 3 3

6 3 3 18

7

Address Regs Index Regs
 8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory
128K words,
32 banks,
1µs cycle

result
addr

result

operand

operand
addr

 Use of three-address, register-register ALU instructions simplifies

pipelined implementation

 No implicit dependencies between inputs and outputs

 Decoupling setting of address register (Ar) from retrieving value from data

register (Xr) simplifies providing multiple outstanding memory accesses

 Software can schedule load of address register before use of value

 Can interleave independent instructions inbetween

 CDC6600 has multiple parallel but unpipelined functional units

 E.g., 2 separate multipliers

 Follow-on machine CDC7600 used pipelined functional units

 Foreshadows later RISC designs

8

9

B0 - n
loop: JZE B0, exit

A0 B0 + a0 load X0
A1 B0 + b0 load X1
X6 X0 + X1
A6 B0 + c0 store X6
B0 B0 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register

 Typical application areas

 Military research (nuclear weapons, cryptography)

 Scientific research

 Weather forecasting

 Oil exploration

 Industrial design (car crash simulation)

 Bioinformatics

 Cryptography

 All involve huge computations on large data sets

 In 70s-80s, Supercomputer  Vector Machine

10

11

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions
ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

v1
Vector Load and
Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

12

Scalar Code
 LI R4, 64
loop:
 L.D F0, 0(R1)
 L.D F2, 0(R2)
 ADD.D F4, F2, F0
 S.D F4, 0(R3)
 DADDIU R1, 8
 DADDIU R2, 8
 DADDIU R3, 8
 DSUBIU R4, 1
 BNEZ R4, loop

Vector Code
 LI VLR, 64
 LV V1, R1
 LV V2, R2
 ADDV.D V3, V1, V2
 SV V3, R3

C code
for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

Epitomized by Cray-1, 1976:

Scalar Unit

 Load/Store Architecture

Vector Extension

 Vector Registers

 Vector Instructions

 Implementation

 Hardwired Control

 Highly Pipelined Functional Units

 Interleaved Memory System

 No Data Caches

 No Virtual Memory

13

14

Single Port

Memory

16 banks of 64-

bit words

+

8-bit SECDED

80MW/sec data

load/store

320MW/sec

instruction

buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64

T Regs

(A0)

((Ah) + j k m)

64

B Regs

S0

S1

S2

S3

S4

S5

S6

S7

A0

A1

A2

A3

A4

A5

A6

A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0

V1

V2

V3

V4

V5

V6

V7

Vk

Vj

Vi V. Mask

V. Length 64 Element

Vector Registers

Compact

 one short instruction encodes N operations

Expressive, tells hardware that these N

operations:

 are independent

 use the same functional unit

 access disjoint registers

 access registers in same pattern as previous instructions

 access a contiguous block of memory

 (unit-stride load/store)

 access memory in a known pattern

(strided load/store)

Scalable

 can run same code on more parallel pipelines (lanes)

15

16

• Use deep pipeline (=> fast clock) to
execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (=> no hazards!)

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

17

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

18

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time: Time before bank ready to accept next request

19

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10,
…

Elements
3, 7, 11,
…

20

Lane Vector register
elements striped
over lanes

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

 Can overlap execution of multiple vector instructions

 example machine has 32 elements per vector register and 8

lanes

21

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle

22

 Vector version of register bypassing

 introduced with Cray-1

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

23

• With chaining, can start dependent instruction as soon as first
result appears

Load
Mul

Add

Load
Mul

Add Time

• Without chaining, must wait for last element of result to be
written before starting dependent instruction

 Two components of vector startup penalty

 functional unit latency (time through pipeline)

 dead time or recovery time (time before another vector

instruction can start down pipeline)

24

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

R X X X W

Functional Unit Latency

Dead Time

First Vector Instruction

Second Vector Instruction

Dead Time

25

Cray C90, Two lanes

4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

4 cycles dead time T0, Eight lanes

No dead time

100% efficiency with 8 element
vectors

No dead time

64 cycles active

 Vector memory-memory instructions hold all vector

operands in main memory

 The first vector machines, CDC Star-100 (‘73) and TI ASC

(‘71), were memory-memory machines

 Cray-1 (’76) was first vector register machine

26

for (i=0; i<N; i++)

{

 C[i] = A[i] + B[i];

 D[i] = A[i] - B[i];

}

Example Source Code ADDV C, A, B

SUBV D, A, B

Vector Memory-Memory Code

LV V1, A

LV V2, B

ADDV V3, V1, V2

SV V3, C

SUBV V4, V1, V2

SV V4, D

Vector Register Code

 Vector memory-memory architectures (VMMA) require greater main

memory bandwidth, why?

 All operands must be read in and out of memory

 VMMAs make if difficult to overlap execution of multiple vector operations,

why?

 Must check dependencies on memory addresses

 VMMAs incur greater startup latency

 Scalar code was faster on CDC Star-100 for vectors < 100 elements

 For Cray-1, vector/scalar breakeven point was around 2 elements

 Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector machines

since Cray-1 have had vector register architectures

 (we ignore vector memory-memory from now on)

27

28

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time reordering
of operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code

Ti
m

e

Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”

29

 ANDI R1, N, 63 # N mod 64

 MTC1 VLR, R1 # Do remainder

loop:

 LV V1, RA

 DSLL R2, R1, 3 # Multiply by 8

 DADDU RA, RA, R2 # Bump pointer

 LV V2, RB

 DADDU RB, RB, R2

 ADDV.D V3, V1, V2

 SV V3, RC

 DADDU RC, RC, R2

 DSUBU N, N, R1 # Subtract elements

 LI R1, 64

 MTC1 VLR, R1 # Reset full length

 BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)

 C[i] = A[i]+B[i];

+

+

+

A B C

64 elements

Remainder

30

Problem: Want to vectorize loops with conditional code:

for (i=0; i<N; i++)

 if (A[i]>0) then

 A[i] = B[i];

Solution: Add vector mask (or flag) registers

– vector version of predicate registers, 1 bit per element

…and maskable vector instructions

– vector operation becomes bubble (“NOP”) at elements where

mask bit is clear

Code example:

CVM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, F0 # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

31

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

Simple Implementation
– execute all N operations, turn off result

writeback according to mask

32

Problem: Loop-carried dependence on reduction variables
sum = 0;

for (i=0; i<N; i++)

 sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform
reduction

Rearrange as:

sum[0:VL-1] = 0 # Vector of VL partial sums

for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks

 sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

Now have VL partial sums in one vector register

do {

 VL = VL/2; # Halve vector length

 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

33

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

34

Histogram example:
for (i=0; i<N; i++)

 A[B[i]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector

LVI vA, rA, vB # Gather initial A values

ADDV vA, vA, 1 # Increment

SVI vA, rA, vB # Scatter incremented values

 65nm CMOS technology

 Vector unit (3.2 GHz)

 8 foreground VRegs + 64

background VRegs (256x64-bit

elements/VReg)

 64-bit functional units: 2

multiply, 2 add, 1 divide/sqrt, 1

logical, 1 mask unit

 8 lanes (32+ FLOPS/cycle, 100+

GFLOPS peak per CPU)

 1 load or store unit (8 x 8-byte

accesses/cycle)

 Scalar unit (1.6 GHz)

 4-way superscalar with out-of-

order and speculative execution

 64KB I-cache and 64KB data

cache

35

•Memory system provides 256GB/s DRAM bandwidth per CPU

•Up to 16 CPUs and up to 1TB DRAM form shared-memory node
– total of 4TB/s bandwidth to shared DRAM memory

•Up to 512 nodes connected via 128GB/s network links (message
passing between nodes)

36

 Very short vectors added to existing ISAs for

microprocessors

 Use existing 64-bit registers split into 2x32b or 4x16b or

8x8b

 Lincoln Labs TX-2 from 1957 had 36b datapath split into

2x18b or 4x9b

 Newer designs have wider registers

 128b for PowerPC Altivec, Intel SSE2/3/4

 256b for Intel AVX

 Single instruction operates on all elements within

register

16b 16b 16b 16b

32b 32b

64b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

+ + + + 4x16b adds

Limited instruction set:

 no vector length control

 no strided load/store or scatter/gather

 unit-stride loads must be aligned to 64/128-bit boundary

Limited vector register length:

 requires superscalar dispatch to keep multiply/add/load

units busy

 loop unrolling to hide latencies increases register pressure

Trend towards fuller vector support in

microprocessors

 Better support for misaligned memory accesses

 Support of double-precision (64-bit floating-point)

 New Intel AVX spec (announced April 2008), 256b vector

registers (expandable up to 1024b)

37

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

38

