ARCHITECTURE OF
COMPUTER
SYSTEMS
LECTURE 15:
VECTOR
COMPUTERS

LAST FIME LECTURE 14;

+— Time (processor cy
(]

NG

pro'cessmg Multithreadin

\\

Q'-.

A //

7zl |
7zl |
7l |

Zl
[]

A A

B Thread 1

W

Thread 2

A

Thread 3

Thread 4

Simultaneous

1IN

NN

e

NN
NN

Bz I ENR

Zi 1 11 | 7 7z

Thread 5
|dle slot

0

SUPERCOMPUTERS

= Definition of a supercomputer:

= Fastest machine in world at given task

= A device to turn a compute-bound problem into an I/O bound problem
= Any machine costing $30M+

= Any machine designed by Seymour Cray

= CDC6600 (Cray, 1964) regarded as first supercomputer

CDC 6600 seEyMOUR CRAY, 1963

B~ A fast pipelined machine with 60-bit words

= 128 Kword main memory capacity, 32
banks

= Ten functional units (parallel, unpipelined)
= Floating Point: adder, 2 multipliers,
divider
= Integer: adder, 2 incrementers, ...

= Hardwired control (no microcoding)

\: Scoreboard for dynamic scheduling of
instructions

= Ten Peripheral Processors for Input/Output
= a fast multi-threaded 12-bit integer ALU

= Very fast clock, 10 MHz (FP add in 4 clocks)

= >400,000 transistors, 750 sq. ft., 5 tons,
, 150 kW, novel freon-based technology for
cooling

= Fastest machine in world for 5 years (until
7500) €

- N N L I | " S— - N m

I1DIVE IVIEIVIU UIN

CRG

W) &er., IBM CEO, August 1963:
“Last week, Control Data ... announced
the 6600 system. I understand that in the
laboratory developing the system there
are only 34 people including the janitor.
Of these, 14 are engineers and 4 are
programmers... Contrasting this modest
effort with our vast development
activities, I fail to understand why we
have lost our industry leadership
position by letting someone else offer the
world's most powerful computer.’

To which Cray replied: “It seems like Mr.
Watson has answered his own question.”

CDC 6600:

A :".’3 three types of reg.
AR CHITECFUR Faster

bit index registers (B)

e All arithmetic and logic instructions are reg-to-reg
6 3 3 3

‘opcode i | i] k Ri O« (Rj) op (Rk)
eOnly Load and Store instructions refer to memory!
6 3 3 18
opcode| i | j disp Ri < M[(Rj) + disp]

Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store
- very useful for vector operations

entral
Memory
128K words,
32 banks,
1us cycle

operand

result

»00: D A&TﬁPATH

Address Regs
8 x 18-bit

operancl-

addr I_ «
_result

addr

"l 10 Functional
"[Units

Index Regs
8 x 18-bit

IR

Inst. Stack
8 x 60-bit

CLDCLODOUU IDA DEDSIUGNLED 11U
SIMPLIFY HIGH-

JRMANCE

e Mﬁﬁ@ﬁﬁ&l@ Nructions simplifies

= No implicit dependencies between inputs and outputs

= Decoupling setting of address register (Ar) from retrieving value from data
register (Xr) simplifies providing multiple outstanding memory accesses

= Software can schedule load of address register before use of value
= Can interleave independent instructions inbetween

= CDC6600 has multiple parallel but unpipelined functional units
= E.g., 2 separate multipliers

= Follow-on machine CDC7600 used pipelined functional units
= Foreshadows later RISC designs

CDC6600: VECTOR
ADDITI@N:z s, exi

AO B BO+ a0 load X0
Al B BO+ b0 load X1

X6 [X0 + X1

A6 [BO +cO store X6
BO B BO+1

jump loop

Ai = address register
Bi = index register
Xi = data register

SUPERCOMPUTER
APPLICATIONS

Typlcal application areas

Military research (nuclear weapons, cryptography)
Scientific research

Weather forecasting

Oil exploration

Industrial design (car crash simulation)
Bioinformatics

Cryptography

= All involve huge computations on large data sets

= In 70s-80s, Supercomputer = Vector Machine

PROGRAMMING

\/ectnr Reaisters

rol F11 1 'N/L RMA
LUJ L J LLJ L\II_ NT 17 \/\
Vector Length Registar| R
_ _ vl
Vector Arithmetic V21)l ol v
Instructions +) +)) +) +) (+)
L_ADDV v vl v? - v v v v v v
VJ, V.L, V & Vj
[0] [1] [VLR-1]
Vector Load and vi Vector Register
Store Instructions — " | |~ ~ A
FEV%JV , r1, r2
Base, rl Stride, r2 Hemor.

=)

VECTOR CODE EXAMPLE

C code
for (i=0; i<64; i++)
C[i] = A[i] + B[1i];

Scalar Code
LI R4, 64
loop:
L.D FO, O(R1)
L.D F2, 0(R2)

Vector Code
LI VLR, 64
LV V1, R1
LV V2, R2
ADDV.D V3, V1, V2
SV V3, R3

ADD.D ¥2, FZ, FO

S.D F4, 0(R3)

DADDIU R1,
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

)

VEET@R S@P&EIR@ 1

= Scalar Unit
= Load/Store Architecture

=Vector Extension
= Vector Registers
= Vector Instructions

=Implementation
= Hardwired Control
= Highly Pipelined Functional
= Interleaved Memory Syste
= No Data Caches
= No Virtual Memory

‘ J'

\
Units

o
il

4 /e g \,;\j%.\s\\

CR/

Single Port
Memory

16 banks of 64-

bit words
+

8-bit SECDED

S80MW/sec data
load/store

320MW/sec
instruction
buffer refill

R V,
aYwas V1 — V. Mask
<] i . V2 V]
. > Al V3 V. Length
Veetor Reg:i'sters V4 Vi
V5
V6
2 | FPAdd
0 S, »| FP Mul
((Ah) +] km) S1] -
S > S92 Sy FP Recip
Ay |64 T S; Int Add
T Regs|——=& S
o > Int Logic
— Int Shift
(AP +jkm) ‘ Al Pop Cnt
» A2 N
A, A3 A .
A) |64 ~ A, | AddrAdd
> . 159 g
B Regsje——i AG A Addr Mul
A7
—7Z . .
| 64-bitx16 [} "L_NIP "L_CIP
| LIP

4 Instruction Buffers

memory bank cycle 50 ns

processor cycle 12.5 ns (80MHz)

=)

VECTOR INSTRUCTION SET
ADV&&’T A‘G(E.eSodes N operations

« Expressive, tells hardware that these N
operations:
= are independent
= use the same functional unit
= access disjoint registers
= access registers in same pattern as previous instructions

= access a contiguous block of memory
(unit-stride load/store)

= access memory in a known pattern
(strided load/store)

=Scalable

= can run same code on more parallel pipelines (lanes)

G

VECTOR ARITHMETIC

EXECUTION

independent (=> no hazards!)

e Use deep pipeline (=> fast clock) to vV VvV
execute element operations 193

e Simplifies control of deep pipeline L
because elements in vector are .o

|

I
L.,

_—
Six stage multiply pipeline

V3 <-vl *v2

VECTOR INSTRUCTION

Execution using
one pipelined
functional unit

A[6] B[6]

A[5]
Al4]
A[3]

R

_Cr2]

B[5]
B[4]
B[3]

v

C[1]

C[0]

A[24]
A[20]
A[16]
A[12]

R

8]
4]

B[24]
B[20]
B[16]
B[12]

v

C[0]

Execution using
four pipelined
functional units

A[25]
A[21]
A[17]
A[13]

R

v

B[25] A[26]
B[21] A[22]
B[17] A[18]
B[13] A[14]

v

9]
_c[s]

C[1]

R

_lc[10]
_cre]

v

C[2]

v

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

R

C[11]

B[27]
B[23]
B[19]
B[15]

v

C[7]

v

C[3]

s

INTERLEAVED

Cray-1, 16

MEMORY ti/g;

Vector Registers

ECTO

anks, 4 cycle bank busy time, 12 cy

gglatency

HSBT)HEJMready to accept next request

Address

Base Stride

JQ}@ D} |

Generator
e
- - DT@
i
0/1/12|3|14/5/6/7/8/9/AIB/C|D|E|F
Memory Bank

VECTOR UNIT
R e

Vector ! ! ! T T T
RegISl’eI’S\\ Elements Elements Elements Elements
——048 1,5,9, .. 2,6,10, 3,7,11
1 A Ty Ty
Lane -~ . : -
Memory Subsystem

Pt

]

STRUCTTIRE
* —

werery et 0 ol R

MICROPROCESSOR

millhfhl "“‘"“.-‘»'a iz

(UCB/ CCT 1 nnL-\

:g,mmmm”mw

Vector register ——t—1 i

elements striped § i g 4

over lanes EgE & = & = = 8 =8
244 25H26M27§281§ 29 30 31

H16]17]118][19][20] [21][22][23}
48191 [10][11][12] [13][14][15]f

[o}“[1]ﬁ[2]w[3]m[4]m [5] [6] L7

' ws 3
g Lui‘. i

w T
; .IIL.
A5 IH

l.l..- bl 2

VECTQR INSTRUCTION..
PARAET EL TSN~ oo

Load Unit Multiply Unit Add Unit

Hii I EE»I
nl ‘l' LY,
| AL

Complete 24 operations/cycle while issuing 1 short instruction/cycle

@

VECTOR:CHA

LV Vl\
MIJLV V3 ’ Vl , V2

ADDV v5\v3, v4 /

V
1

Load
Unit

Memory

N <

W<

<

o

VECTOR CHAINING
AD VANTAGE sy

Time—

e With chaining, can start dependent instruction as soon as first
result appears

 I—

VECEGRSTART

nalty
u :ppelme)
= dead time or recovery time (t1me efore another vector
instruction can start down pipeline)

Functional Unit Latency

|A Ll
|‘ 'l

RIX [X |X W |
i Sl Dead|Time
RIX|X|X|W
RIX [X [X |W y
RIX[X|X|W
) Dead Time , R IX | X |X Second Vector Instruction
RIX[X|X|W v

2)

DEAD TIME AND SHORT VECTORS

"

4 cycles dead time

64 cycles active

Cray C90, Two lanes
4 cycle dead time

Maximum efficiency 94%
with 128 element vectors

No dead time ! !! !! !! !! !!
IRRAMA

TO, Eight lanes
No dead time

100% efficiency with 8 element
vectors

VECTOR MEMORY-MEMORY
VERSUS:VECTOR REGISTER
MA GCEINES memory machines o 100

= Cray-1 ('76) was first vector register machine

Vector Memory-Memory Code

Example Source Code
for (i1i=0; i<N; i++)

ADDV C, A, B
SUBV D, A, B

Vector Register Code

O
|.|.
I

A[i] - B[i]; LV V1, A
LV V2, B
ADDV V3, V1, V2
SV V3, C
SUBV V4, V1, V2

SV V4, D

VECTOR MEMORY-MEMORY
VS. VECTOR REGISTER

E;richitectures (VMMA) require greater main
memory bandwidth, why?

= All operands must be read in and out of memory

= VMMASs make if difficult to overlap execution of multiple vector operations,
why?
= Must check dependencies on memory addresses

= VMMASs incur greater startup latency
= Scalar code was faster on CDC Star-100 for vectors < 100 elements

= For Cray-1, vector/scalar breakeven point was around 2 elements

= Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector machines
since Cray-1 have had vector register architectures

» (We ignore vector memory-memory from now on)

@

AUTOMATEE CODE
VECTORIZA '

Vectorized Code

lllllllllllllllll

Iter. 2
Vector Instruction

of operation sequencing
=> requires extensive loop dependence analysis

©

VECTOR STRIPMINING

Problem: Vector registers have finite length

Solution: Break loops into pieces that fit in registers, “Stripmining”

for (i=0; i<N; i++)

C[i] = A

[1]+B[1];

A B C
I]jj@}-[l} Remainder

i)

IRIERI

~64 elements

ANDI R1, N, 63 # N mod 64
MTC1l VLR, Rl # Do remainder

loop:

LV V1, RA

DSLL R2, R1l, 3 # Multiply by 8
DADDU RA, RA, R2 # Bump pointer
LV V2, RB

DADDU RB, RB, R2

ADDV.D V3, V1, V2

SV V3, RC

DADDU RC, RC, R2

DSUBU N, N, Rl # Subtract elements
LI R1l, 64

MTC1l VLR, R1 # Reset full length
BGTZ N, loop # Any more to do-?

Ggg

VEGTOR.CONDITIONAL
EXECUTEOINS .

A[i] = BI[1i];

Solution: Add vector mask (or flag) registers
- vector version of predicate registers, 1 bit per element
...and maskable vector instructions
- vector operation becomes bubble (“NOP”) at elements where
mask bit is clear

Code example:

CvM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, FO # Set bits in mask register where A>0
LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

MASKED VECTOR

|m le Irrl?ementatlon | Density-Time Implementation

ofgergtgons, tn
a

— scan mask vector and only execute
elements with non-zero masks

M[7]=1 A[7] B[7] M[7]=1
M[6]=0 A[6] B[6] M[6]=0 T Al7] BL7]
M[5]=1 A[5] B[5] M[5]=1 | |
M[4]=1 A[4] B[4] M[4]=1\])
M[3]=0 A[3] BI[3] M[3]=0 — CI5] 7
K { M[2]=0 _ C[4]
M[2]=0 cr21 | ML1=1 - :
21=0 21 M[O]:O\.

M[1]=1 | C[1] C[1]

B Write data port
M[0]=0 C[0]

Write Enable Write data port

)

VEETOR REDUCTIONS

sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform

reduction

Rearrange as:

sum[0:VL-1] = O # Vector of VL partial sums
for (i=0; i<N; i+=VL) # Stripmine VL-sized chunks

sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
Now have VL partial sums in one vector register
do {
VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials
} while (VL>1)

o

VECTOR SCATTER/GATHER

Want to vectorize loops with indirect accesses:
i<N; i++)

for (i=

0;

A[i]

= B[i] + C[D[1]]

Indexed load instruction (Gather)

LV vD,
LVI vC,
LV VB,

rD
r
rB

#
C, vD #

#

ADDV.D vA,vB,vC #

SV vA,

rA

#

Load indices in D vector
Load indirect from rC base
Load B vector

Do add

Store result

o

VECTOR SCATTER/GATHER

Histogram example-
for (i=0; i<N; i++)
A[B[i]]++;

Is following a correct translation?
LV vB, rB # Load indices in B vector
LVI vA, rA, vB # Gather initial A wvalues
ADDV vA, vA, 1 # Increment

SVI vA, rA, vB # Scatter incremented values

o

A MODERN VECTOR SUPER: NER™SX"9'{3%687 08

8-Way Vector Mask Reg. |+(Mask
Unit) Logical
<
Load or -
Store Vector Reg. | Add.
i Add.
ﬁ(Div./Sqrt. 0
1
nd Mult./Add.
Scalar Reg. |+
E:;: - MultJAdd./Div.
Unit AU
(au ()

= Vector unit (3.2 GHz)

= 8 foreground VRegs + 64
background VRegs (256x64-bit
elements/VReg)

= 64-bit functional units: 2
multiply, 2 add, 1 divide/sqrt, 1
logical, 1 mask unit

= 8 lanes (32+ FLOPS/cycle, 100+
GFLOPS peak per CPU)

= 1 load or store unit (8 x 8-byte
accesses/cycle)

= Scalar unit (1.6 GHz)

= 4-way superscalar with out-of-
order and speculative execution

« Memory system provides 256GB/s DRAM! RahdwidtA Ser P At

eUp to 16 CPUs and up to 1TB DRAM form shared-memory node
— total of 4TB/s bandwidth to shared DRAM memory

e Up to 512 nodes connected via 128GB/s network links (message
passing between nodes)

O

s wis O’ oShosen L] e olm - e Rl sl aSes ohw sl

1-61?/91"5/ short VL?‘?BT‘S added to &)@Ps’ring ISAS f(lll6b

gbmicrpgyoceshgrs [gp sb |sb 8b 8b
= Use existing 64-bit registers split into 2x32b or 4x16b or
8x8b

= Lincoln Labs TX-2 from 1957 had 36b datapath split into
2x18b or 4x9b

= Newer designs have wider registers
= 128b for PowerPC Altivec, Intel SSE2/3/4
= 256b for Intel AVX

166 Single instrliébion operatesl bab all elements Mtithin

TEErsteT o o o

Sy S o SN > SN

16b 16b 16b 16b

MULTIMEDIA EXTENSIONS
VERSESVEGTORS

= no strided load/store or scatter/gather
= unit-stride loads must be aligned to 64/128-bit boundary

«Limited vector register length:

= requires superscalar dispatch to keep multiply/add/load
units busy

= loop unrolling to hide latencies increases register pressure

 Trend towards fuller vector support in

miCcroprocessors
= Better support for misaligned memory accesses
= Support of double-precision (64-bit floating-point)

= New Intel AVX spec (announced April 2008), 256b vector
registers (expandable up to 1024b)

©

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

o

