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 Definition of a supercomputer: 

 Fastest machine in world at given task 

 A device to turn a compute-bound problem into an I/O bound problem  

 Any machine costing $30M+ 

 Any machine designed by Seymour Cray 

 

 CDC6600 (Cray, 1964) regarded as first supercomputer 
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SEYMOUR CRAY

 A fast pipelined machine with 60-bit words 

 128 Kword main memory capacity, 32 

banks 

 Ten functional units (parallel, unpipelined) 

 Floating Point: adder, 2 multipliers, 

divider 

 Integer: adder, 2 incrementers, ... 

 Hardwired control (no microcoding) 

 Scoreboard for dynamic scheduling of 

instructions  

 Ten Peripheral Processors for Input/Output 

 a fast multi-threaded 12-bit integer ALU 

 Very fast clock, 10 MHz (FP add in 4 clocks) 

 >400,000 transistors,  750 sq. ft., 5 tons, 

150 kW, novel freon-based technology for 

cooling 

 Fastest machine in world for 5 years (until 

7600) 

 over 100 sold ($7-10M each) 
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Thomas Watson Jr., IBM CEO, August 1963: 

 “Last week, Control Data ... announced 

the 6600 system. I understand that in the 

laboratory developing the system there 

are only 34 people including the janitor. 

Of these, 14 are engineers and 4 are 

programmers... Contrasting this modest 

effort with our vast development 

activities, I fail to understand why we 

have lost our industry leadership 

position by letting someone else offer the 

world's most powerful computer.” 

  

To which Cray replied: “It seems like Mr. 

Watson has answered his own question.” 
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• Separate instructions to manipulate three types of reg. 
   8   60-bit data registers (X) 
        8   18-bit address registers (A) 
     8   18-bit index registers (B) 

 

•All arithmetic and logic instructions are reg-to-reg  
 
 
 
•Only Load and Store instructions refer to memory! 
 
 
 
 Touching address registers 1 to 5 initiates a load   
                  6 to 7 initiates a store  

 - very useful for vector operations 

opcode   i      j      k     Ri  (Rj) op (Rk) 

 

  

opcode   i     j                disp                  Ri  M[(Rj) + disp] 
 

6 3 3 3 

6 3 3 18 
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Address Regs         Index Regs 
  8 x 18-bit                8 x 18-bit 

Operand Regs 
8 x 60-bit 

Inst. Stack 
8 x 60-bit 

IR 

10 Functional 
Units 

Central 
Memory 
128K words, 
32 banks, 
1µs cycle 

result 
addr 

result 

operand 

operand 
addr 



 Use of three-address, register-register ALU instructions simplifies 

pipelined implementation 

 No implicit dependencies between inputs and outputs 

 Decoupling setting of address register (Ar) from retrieving value from data 

register (Xr) simplifies providing multiple outstanding memory accesses 

 Software can schedule load of address register before use of value 

 Can interleave independent instructions inbetween 

 CDC6600 has multiple parallel but unpipelined functional units 

 E.g., 2 separate multipliers 

 Follow-on machine CDC7600 used pipelined functional units 

 Foreshadows later RISC designs 
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B0    - n 
loop: JZE   B0, exit 

A0    B0 + a0  load X0 
A1    B0 + b0  load X1 
X6    X0 + X1 
A6    B0 + c0  store X6 
B0    B0 + 1 
jump loop 

 

Ai = address register 
Bi = index register 
Xi = data register 



  Typical application areas 

  Military research (nuclear weapons, cryptography) 

  Scientific research 

  Weather forecasting 

  Oil exploration 

  Industrial design (car crash simulation) 

  Bioinformatics 

  Cryptography 

 

 All involve huge computations on large data sets 

 

 In 70s-80s, Supercomputer  Vector Machine 
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+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 
ADDV v3, v1, v2 v3 

v2 
v1 

Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 

VLR Vector Length Register 

v1 
Vector Load and 
Store Instructions 
LV v1, r1, r2 

Base, r1 Stride, r2 
Memory 

Vector Register 
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# Scalar Code 
  LI R4, 64 
loop: 
  L.D F0, 0(R1) 
  L.D F2, 0(R2) 
  ADD.D F4, F2, F0 
  S.D F4, 0(R3) 
  DADDIU R1, 8 
  DADDIU R2, 8 
  DADDIU R3, 8 
  DSUBIU R4, 1 
  BNEZ R4, loop 

# Vector Code 
  LI VLR, 64  
  LV V1, R1 
  LV V2, R2 
  ADDV.D V3, V1, V2 
  SV V3, R3 

# C code 
for (i=0; i<64; i++) 
  C[i] = A[i] + B[i]; 



Epitomized by Cray-1, 1976: 

Scalar Unit 

 Load/Store Architecture 

Vector Extension 

 Vector Registers 

 Vector Instructions 

 Implementation 

 Hardwired Control 

 Highly Pipelined Functional Units 

 Interleaved Memory System 

 No Data Caches 

 No Virtual Memory 
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Single Port 

Memory 

 

16 banks of 64-

bit words 

+  

8-bit SECDED 

 

80MW/sec data 

load/store 

 

320MW/sec 

instruction 

buffer refill 

4 Instruction Buffers 

64-bitx16 NIP 

LIP 

CIP 

(A0) 

( (Ah) + j k m ) 

64 

T Regs 

(A0) 

( (Ah) + j k m ) 

64  

B Regs 

S0 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

A0 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

Si 

Tjk 

Ai 

Bjk 

FP Add 

FP Mul 

FP Recip 

Int Add 

Int Logic 

Int Shift 

Pop Cnt 

Sj 

Si 

Sk 

Addr Add 

Addr Mul 

Aj 

Ai 

Ak 

memory bank cycle 50 ns     processor cycle 12.5 ns (80MHz) 

V0 

V1 

V2 

V3 

V4 

V5 

V6 

V7 

Vk 

Vj 

Vi V. Mask 

V. Length 64 Element 

Vector Registers 



Compact 

 one short instruction encodes N operations 

Expressive, tells hardware that these N 

operations: 

 are independent 

 use the same functional unit 

 access disjoint registers 

 access registers in same pattern as previous instructions 

 access a contiguous block of memory 

 (unit-stride load/store) 

 access memory in a known pattern  

(strided load/store)  

Scalable 

 can run same code on more parallel pipelines (lanes) 
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• Use deep pipeline (=> fast clock) to 
execute element operations 

• Simplifies control of deep pipeline 
because elements in vector are 
independent (=> no hazards!)  

V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 
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ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 
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0 1 2 3 4 5 6 7 8 9 A B C D E F 

+ 

Base Stride 
Vector Registers 

Memory Banks 

Address 
Generator 

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency 
• Bank busy time: Time before bank ready to accept next request 
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Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 
0, 4, 8, … 

Elements 
1, 5, 9, … 

Elements 
2, 6, 10, 
… 

Elements 
3, 7, 11, 
… 
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Lane Vector register 
elements striped 
over lanes 

[0] 
[8] 
[16] 
[24] 

[1] 
[9] 
[17] 
[25] 

[2] 
[10] 
[18] 
[26] 

[3] 
[11] 
[19] 
[27] 

[4] 
[12] 
[20] 
[28] 

[5] 
[13] 
[21] 
[29] 

[6] 
[14] 
[22] 
[30] 

[7] 
[15] 
[23] 
[31] 



 Can overlap execution of multiple vector instructions 

 example machine has 32 elements per vector register and 8 

lanes 

21 

load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Complete 24 operations/cycle while issuing 1 short instruction/cycle 



22 

 Vector version of register bypassing 

 introduced with Cray-1 

Memory 

V
1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 
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• With chaining, can start dependent instruction as soon as first 
result appears 

Load 
Mul 

Add 

Load 
Mul 

Add Time 

• Without chaining, must wait for last element of result to be 
written before starting dependent instruction 



 Two components of vector startup penalty 

 functional unit latency (time through pipeline) 

 dead time or recovery time (time before another vector 

instruction can start down pipeline) 
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R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

R X X X W 

Functional Unit Latency 

Dead Time 

First Vector Instruction 

Second Vector Instruction 

Dead Time 
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Cray C90, Two lanes 

4 cycle dead time 

Maximum efficiency 94% 
with 128 element vectors 

4 cycles dead time T0, Eight lanes 

No dead time 

100% efficiency with 8 element 
vectors 

No dead time 

64 cycles active 



 Vector memory-memory instructions hold all vector 

operands in main memory 

 The first vector machines, CDC Star-100 (‘73) and TI ASC 

(‘71), were memory-memory machines 

 Cray-1 (’76) was first vector register machine 
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for (i=0; i<N; i++) 

{ 

  C[i] = A[i] + B[i]; 

  D[i] = A[i] - B[i]; 

} 

Example Source Code ADDV C, A, B 

SUBV D, A, B 

Vector Memory-Memory Code 

LV V1, A 

LV V2, B 

ADDV V3, V1, V2 

SV V3, C 

SUBV V4, V1, V2 

SV V4, D 

Vector Register Code 



 Vector memory-memory architectures (VMMA) require greater main 

memory bandwidth, why? 

 All operands must be read in and out of memory 

 VMMAs make if difficult to overlap execution of multiple vector operations, 

why?  

 Must check dependencies on memory addresses 

 VMMAs incur greater startup latency 

 Scalar code was faster on CDC Star-100 for vectors < 100 elements 

 For Cray-1, vector/scalar breakeven point was around 2 elements 

 Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector machines 

since Cray-1 have had vector register architectures 

 (we ignore vector memory-memory from now on) 
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for (i=0; i < N; i++) 

    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a massive compile-time reordering 
of operation sequencing 
 requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 Iter. 2 

Vectorized Code 

Ti
m

e 



Problem: Vector registers have finite length 

Solution: Break loops into pieces that fit in registers, “Stripmining” 
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 ANDI R1, N, 63   # N mod 64 

 MTC1 VLR, R1     # Do remainder 

loop: 

 LV V1, RA 

 DSLL R2, R1, 3 # Multiply by 8       

 DADDU RA, RA, R2 # Bump pointer 

 LV V2, RB 

 DADDU RB, RB, R2  

 ADDV.D V3, V1, V2 

 SV V3, RC 

 DADDU RC, RC, R2 

 DSUBU N, N, R1 # Subtract elements 

 LI R1, 64 

 MTC1 VLR, R1   # Reset full length 

 BGTZ N, loop   # Any more to do? 

for (i=0; i<N; i++) 

    C[i] = A[i]+B[i]; 

+ 

+ 

+ 

A B C 

64 elements 

Remainder 
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Problem: Want to vectorize loops with conditional code: 

for (i=0; i<N; i++) 

    if (A[i]>0) then 

        A[i] = B[i]; 

     

Solution: Add vector mask (or flag) registers 

– vector version of predicate registers, 1 bit per element 

…and maskable vector instructions 

– vector operation becomes bubble (“NOP”) at elements where 

mask bit is clear 

Code example: 

CVM             # Turn on all elements  

LV vA, rA       # Load entire A vector 

SGTVS.D vA, F0  # Set bits in mask register where A>0 

LV vA, rB       # Load B vector into A under mask 

SV vA, rA       # Store A back to memory under mask 
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C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

Density-Time Implementation 
– scan mask vector and only execute 

elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

Simple Implementation 
– execute all N operations, turn off result 

writeback according to mask 
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Problem: Loop-carried dependence on reduction variables 
sum = 0; 

for (i=0; i<N; i++) 

    sum += A[i];  # Loop-carried dependence on sum 

Solution: Re-associate operations if possible, use binary tree to perform 
reduction 

# Rearrange as: 

sum[0:VL-1] = 0                 # Vector of VL partial sums 

for(i=0; i<N; i+=VL)            # Stripmine VL-sized chunks 

    sum[0:VL-1] += A[i:i+VL-1]; # Vector sum 

# Now have VL partial sums in one vector register 

do { 

    VL = VL/2;                    # Halve vector length 

    sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials 

} while (VL>1) 
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Want to vectorize loops with indirect accesses: 

for (i=0; i<N; i++) 

    A[i] = B[i] + C[D[i]] 

 

Indexed load instruction (Gather) 

LV vD, rD       # Load indices in D vector 

LVI vC, rC, vD  # Load indirect from rC base 

LV vB, rB       # Load B vector 

ADDV.D vA,vB,vC # Do add 

SV vA, rA       # Store result 
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Histogram example: 
for (i=0; i<N; i++) 

    A[B[i]]++; 

 

Is following a correct translation? 
LV vB, rB       # Load indices in B vector 

LVI vA, rA, vB  # Gather initial A values 

ADDV vA, vA, 1  # Increment 

SVI vA, rA, vB  # Scatter incremented values 



 65nm CMOS technology 

 Vector unit (3.2 GHz) 

 8 foreground VRegs + 64 

background VRegs (256x64-bit 

elements/VReg) 

 64-bit functional units: 2 

multiply, 2 add, 1 divide/sqrt, 1 

logical, 1 mask unit 

 8 lanes (32+ FLOPS/cycle, 100+ 

GFLOPS peak per CPU) 

 1 load or store unit (8 x 8-byte 

accesses/cycle)  

 Scalar unit (1.6 GHz) 

 4-way superscalar with out-of-

order and speculative execution 

 64KB I-cache and 64KB data 

cache 
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•Memory system provides 256GB/s DRAM bandwidth per CPU 

•Up to 16 CPUs and up to 1TB DRAM form shared-memory node 
– total of 4TB/s bandwidth to shared DRAM memory 

•Up to 512 nodes connected via 128GB/s network links (message 
passing between nodes) 
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 Very short vectors added to existing ISAs for 

microprocessors 

 Use existing 64-bit registers split into 2x32b or 4x16b or 

8x8b 

 Lincoln Labs TX-2 from 1957 had 36b datapath split into 

2x18b or 4x9b 

 Newer designs have wider registers 

 128b for PowerPC Altivec, Intel SSE2/3/4 

 256b for Intel AVX  

 Single instruction operates on all elements within 

register 

16b 16b 16b 16b 

32b 32b 

64b 

8b 8b 8b 8b 8b 8b 8b 8b 

16b 16b 16b 16b 

16b 16b 16b 16b 

16b 16b 16b 16b 

+ + + + 4x16b adds 



Limited instruction set: 

 no vector length control 

 no strided load/store or scatter/gather 

 unit-stride loads must be aligned to 64/128-bit boundary 

Limited vector register length: 

 requires superscalar dispatch to keep multiply/add/load 

units busy 

 loop unrolling to hide latencies increases register pressure 

Trend towards fuller vector support in 

microprocessors 

 Better support for misaligned memory accesses 

 Support of double-precision (64-bit floating-point) 

 New Intel AVX spec (announced April 2008), 256b vector 

registers (expandable up to 1024b)  
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 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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