ARCHITECTURE OF
COMPUTER
SYSTEMS
LECTURE 14: @




LAST TIME LECTURE 13:
VLIW

= In a classic VLIW, compiler is responsible for avoiding all hazards ->
simple hardware, complex compiler. Later VLIWs added more dynamic

hardware interlocks

= Use loop unrolling and software pipelining for loops, trace scheduling for
more irregular code

= Static scheduling difficult in presence of unpredictable branches and
variable latency memory




MULTITHREADING

= Difficult to continue to extract instruction-level parallelism (ILP) from a
single sequential thread of control

= Many workloads can make use of thread-level parallelism (TLP)
= TLP from multiprogramming (run independent sequential
jobs)
= TLP from multithreaded applications (run one job faster
using parallel threads)

= Multithreading uses TLP to improve utilization of a single processor




PIPELINE HAZARDS

EtO Tl EtZ Et3 .14 .15 Et6 17 Et8 : t95t1Qt1]5t12:t13:t14:

LW rl1, 0(r2) FID[X[MW { | { :

LWr5, 12(rl) | |F|D(D(D[D[X[MW : i i :

ADDIr5, r5, #12 | |E|F|F|F|D|D|D|D{X{MW :
SW12(r1),r5 i i i i i i [E|F|F|F[D/DIDID

= Each instruction may depend on the next

What is usually done to cope with this?




MULTITHREADING

How can we guarantee no dependencies between
instructions in a pipeline?

-- One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

t0 t1 t2 13 t4 t5 16 t7 .t8. t9

T1: LW rl, 0(r2) F|ID XM W‘W Prior instruction in
T2: ADDr7,rl,r4; [E[DIXIMW @ | @ @ thread always
T3: XORITS, 14, #12 | [E[D[XIMW | hack before next
T4: SWO@r7), r5 i i i [F|D|X|MW} | instruction in

. : :  same thread reads
T1:LWr5, 12(rl) .F .B.—X—.—MlTvlrregister file




CUL O0VUU FERIFOERAL
PROCESSORS

(CRAY, 1964

= First multithreaded hardware

= 10 “virtual” I/O processors

= Fixed interleave on simple pipeline

= Pipeline has 100ns cycle time

= Each virtual processor executes one instruction every 1000ns

= Accumulator-based instruction set to reduce processor state @



Vo A Bl ol

MULTI THREADED

PIPELINE

n n
> >

DY

C ‘\ 'II :X >
PCEN— |18 j‘ GPR1 =
1>|A 'y :Y >
| N
+ 1
_u [T [1
‘2 Threa W 2 W

d

By

: Havg%e&ﬁ"ry thread select down pipeline to ensure correct
state bits read/written at each pipe stage

= Appears to software (including OS) as multiple, albeit

slower, CPUs




MULTITHREADING
COSTS

= Each thread requires its own user state
= PC
= GPRs

= Also, needs its own system state
= Virtual-memory page-table-base register
= Exception-handling registers

= Other overheads:

= Additional cache/TLB conflicts from competing
threads

= (or add larger cache/TLB capacity)

= More OS overhead to schedule more threads (where
do all these threads come from?)




THREAD SCHEDULING
POLICIES

= Fixed interleave (CDC 6600 PPUs, 1964)
= Each of N threads executes one instruction every N cycles

= If thread not ready to go in its slot, insert pipeline bubble

= Software-controlled interleave (TI ASC PPUs, 1971)
= OS allocates S pipeline slots amongst N threads

= Hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

JO0OOEOOOOROEDOG

= Hardware-controlled thread scheduling (HEP, 1982)
= Hardware keeps track of which threads are ready to go

= Picks next thread to execute based on hardware priority scheme




DENELCOR HEP

(BURTON SMITH, 1982)

First commercial machine to use hardware threading in main
CPU

= 120 threads per processor

= 10 MHz clock rate

= Up to 8 processors

= precursor to Tera MTA (Multithreaded Architecture)



TERA MTA (1990-)

= Up to 256 processors
= Up to 128 active threads per processor

= Processors and memory modules populat
sparse 3D torus interconnection fabric

= Flat, shared main memory
= No data cache

= Sustains one main memory access per
cycle per processor

= GaAs logic in prototype, 1KW/processor @
2060MHz

= Second version CMOS, MTA-2, 50W/processor

= New version, XMT, fits into AMD Opteron
socket, runs at 500MHz

=)



MTA PIPELINE

Issue Pool Inst Fetch
> e Every cycle, one
W / l \ VLIW instruction from
M A c one active thread is
launched into pipeline
ﬁ e Instruction pipeline
A D — () i
= is 21 cycles long
S £ W . Memory operations
~ 4 incur ~150 cycles of
= 5 latency
= W s W
[RetryPool ]
Assuming a single thread issues one
instruction every 21 cycles, and clock
[Interconnection Network ] rate is 260 MHz...
What is single-thread performance?
Memory pipeline

)



COARSE-GRAIN
MULTITHREADING

Tera MTA designed for supercomputing applications
with large data sets and low locality

= No data cache

= Many parallel threads needed to hide large memory
latency

Other applications are more cache friendly
= Few pipeline bubbles if cache mostly has hits

= Just add a few threads to hide occasional cache miss
latencies

= Swap threads on cache misses

e



1990)

= Modified SPARC chips

= register windows hold different
thread contexts

A

= Up to four threads per node

= Thread switch on local cache miss

=)



IbM FOWERFU RO0O4-
1V (2000)

Commercial coarse-grain multithreading CPU

= Based on PowerPC with quad-issue in-order five-stage
pipeline

= Each physical CPU supports two virtual CPUs

= On L2 cache miss, pipeline is flushed and execution
switches to second thread

= short pipeline minimizes flush penalty (4 cycles), small
compared to memory access latency

= flush pipeline to simplify exception handling

G



ORACLE/SUN NIAGARA
PROCESSORS

= Target is datacenters running web servers and databases, with many
concurrent requests

= Provide multiple simple cores each with multiple hardware threads,
reduced energy/operation though much lower single thread performance

= Niagara-1 [2004], 8 cores, 4 threads/core
= Niagara-2 [2007], 8 cores, 8 threads/core
= Niagara-3 [2009], 16 cores, 8 threads/core
= T4 [2011], 8 cores, 8 threads/core

= T5[2012], 16 cores, 8 threads/core




ORACLE/SUN NIAGARA-3

LT ATRTD YYAT T"/\'I' TCY” InNN
e T

P
aurmrmn;\mu — — SR R BRI o

R g

i""‘ ’*’15?' "U" S Jl“" éh"‘r‘

30 B e e u‘.nnunmr o nn)‘nmxhrn el 0 Do g BN S pol o oo

RSN R T SRR AR S A R AR




SIMULTANEOUS
MULTITHREADING (SMT)
FOR OOO SUPERSCALARS

= Techniques presented so far have all been “vertical” multithreading where
each pipeline stage works on one thread at a time

= SMT uses fine-grain control already present inside an OoO superscalar to
allow instructions from multiple threads to enter execution on same clock
cycle. Gives better utilization of machine resources.

o



MUDS | tAL'LU I IUIN

UNIT
00C

—1
=

(=
=

Percent of Total Issue Cycles
i LA
= =

i
=

20

10

.‘ v c%

nase? NGl 77777 7

alvinn
CSPICSS0
fpppp
hydry2d
ora
sU200r
5%
LAy

Applications

NAN

QAL

E memory conflict
E long fp

short {p

long integer

ﬁ short integer
load delays

D control hazards
4 branch misprediction
E deache rmss

[III 1cache rmiss

£ ditb miss

B itib miss

. processor busy

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading:
Maximizing On-chip Parallelism”,

ISCA 1995.

©



SUPERSCALAR MACHINE
EFFICIENC Yoo

Instruction
issue

Time

- _Completely idle cycle

( )

Partially filled cycle,

— 1le,IPC<4

( )




VLN ILICAL

MULTITHREADING

Issue width

Instructio
n issue
Second thread
interleaved cycle-by-
pos cycle
ol
Time
Partially filled
— cycle, i.e., IPC < 4
( )

= What is the effect of cycle-by-cycle interleaving?

=)



(CMP) i

233833
222222

& & &
- e

*549
n!n!u

Time

a8 & L &L
At L L L

$33333
22822
223288
222822

= What is the effect of splitting into multiple processors?

)



IDEAL SUPERSCALAR
MULTITHREADING

[TULLSEN, EGGERS, LEVY, UW, 19955ue width

bl e B
b B B

L
L & J
L&

*4
e

Time "

= Interleave multiple threads to multiple issue slots with
no restrictions

)



0-0-0 SIMULTANEOUS MULTITHREADING

[TULLSEN, EGGERS, EMER, LEVY, STAMM, LO, DEC/UW, 1996]

= Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

= Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple threads

= 00O instruction window already has most of the circuitry
required to schedule from multiple threads

= Any single thread can utilize whole machine

o



IBM POWER 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
ISsue an instruction each cycle.

Branch redirects \M.Df.nmpmmlill
------------------------------------------------
|

i .
1 Instruction fetch

]
BR

: J — MP 155 (H RF H Ex H WB — Xfer
'—+| IF ~| IC BF LD/ST
- —w—xss—nf—m—nc—|1=m:—w3—xfe: CP -
1 I
: ) FX !
. D0 [ D1 — D2 | D3 [ Xfer — GD 11 MP [ ISS | RF [={ EX WB [ Xfer [ |
]
I Instruction crack and :
: group formation —| MP 7] IS5 [ RF _% FP |

1
1
! F6 WB |— K.ﬁar'— :

: Interrupts and flushes



Power 4

Branch redirects
| Instruction fetch
[ N
I--I- IF 1 IC BF —
e -[ — CF =
1
i
I
: DO [H D1 H D2 H D3 (Xfer(— GD H E
: Instruction crack and :
: group formation - -
I
| |
I
: Interrupts and flushes :
2 commits
_maeaess POWErS | Outroforder processing (architected
. aae Tegistersets)
P MP ISSH AF HEX : Pipaline WB —{xf
E Load/store il
::: IF c Bp pipeline
: — MP {185 [ AF [ EA |—{DC [—{Fmt [—WB [—{xfer CP -
: QL —
P @’- | D2 [+ D3 [{Xfer - GD | MP [{ISS [ AF [ EX Fixed-point 1/B [ PXfer [~
: Group formation and pipeline

WB [—Xfer

2 fetch (PC)" "= = _%; |
2 initial decodes point plpsine

e e e e e e o e e e A e G S A N S e S G et e




mEE
i s Dynamic
i Branch prediction ] ins%ruction
{ selection Shared
Shared :
Program Branch| §| Return| | Target S execution
counter history | #f stack | | cache queues units
tables LSUO Data Data
S _,4..&5"1:"6 = FXUO Translation ~Cache
nstruct LSU1
: buffer 0 Group formation LU
Instruction 5 R = FXU1 . G St
cache Instruction decode [— : . i oL o
- Dispatch FPUO FoscIoD piala
Instruction
translation r::(m é
| BXU |
Thread CRL Data Data
priority Shared- Read Write translation | |cache
register shared- shared- =
mappers register files register files 2

cache

| [ Shared by two threads [ Thread 0 resources NN Thread 1 resources |

Why only 2 threads? With 4, one of the shared

resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck



CHANGES IN POWER 5
ndefdi SLIBROR L rdMclihe and e

instruction address translation buffers
= Added per-thread load and store queues
= Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches
= Added separate instruction prefetch and buffering per thread
= Increased the number of virtual registers from 152 to 240
= Increased the size of several issue queues

= The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support

o



PENTIUM-4
HYPERTHREADING o0z

= First commercial SMT design (2-way SMT)
= Hyperthreading == SMT

= Logical processors share nearly all resources of the
physical processor
= Caches, execution units, branch predictors

= Die area overhead of hyperthreading ~ 5%

= When one logical processor is stalled, the other can make
progress

= No logical processor can use all entries in queues when two threads
are active

= Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

= Hyperthreading dropped on OoO P6 based followons to
Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until
revived with Nehalem generation machines in 2008.

= Intel Atom (in-order x86 core) has two-way vertical
multithreading

o



INTLIAL
PERFORMANCE OF

SM 4 Extreme SMT yields 1.01 speedup for
ink_rate benchmark and 1.07 for SPECfp_rate

= Pentium 4 is dual threaded SMT

= SPECRate requires that each SPEC benchmark be run against a
vendor-selected number of copies of the same benchmark

= Running on Pentium 4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

= Power 5, 8-processor server 1.23 faster for SPECint_rate
with SMT, 1.16 faster for SPECfp_rate

= Power 5 running 2 copies of each app speedup between
0.89 and 1.41

= Most gained some
= F1.Pt. apps had most cache conflicts and least gains



SMT ADAPTATION TO
o DARALLELISM LY PE o

leve] parallelism (TLP) entire parallelism (TLP) entire machine
machine width is shared by all width is available for instruction
threads level parallelism (ILP)
Issue width Issue width
EEE TR T
22222
»11r==i¢4
44
LA L
L X
ETE
ree
H
F e
o - L 2
j : . =
Time $¢ Time s
X2
At
iX
EX T T T3
il Ll
XX IX]
EZZT T T LT L LT
daiai il ElL
2 bl o A A

)



ICOUN1T CHRHUUMING
POLICY

Fetch from thread with the least instructions in flight.

Why does this enhance throughput?



A@ATEQ

+«—Time (processor cy

SUMMARY.
MULTITHREADED

Simultaneous

R&Eeﬁamed Multipracessing  myjtithreadin:
| . BEENN EHEN
. N [ ] NN,
B R N
. . [ ] B B R N
NIN 1, N
EEEE S8 NN EEEE
2 NN NN N
. . .|\\ N . W
N N DN N
I [ NN
N N NI [ ]
2 N 7 J:\‘ N KNE
B Thread 1 Thread 3 Thread 5
N Thread 2 Thread 4 dle slot

&)



ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

o



