


 In a classic VLIW, compiler is responsible for avoiding all hazards -> 

simple hardware, complex compiler. Later VLIWs added more dynamic 

hardware interlocks 

 Use loop unrolling and software pipelining for loops, trace scheduling for 

more irregular code 

 Static scheduling difficult in presence of unpredictable branches and 

variable latency memory 
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 Difficult to continue to extract instruction-level parallelism (ILP) from a 

single sequential thread of control 

 Many workloads can make use of thread-level parallelism (TLP) 

 TLP from multiprogramming (run independent sequential 

jobs) 

 TLP from multithreaded applications (run one job faster 

using parallel threads) 

 Multithreading uses TLP to improve utilization of a single processor 
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 Each instruction may depend on the next 
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LW r1, 0(r2) 

LW r5, 12(r1) 

ADDI r5, r5, #12 

SW 12(r1), r5 
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t9 t10 t11 t12 t13 t14 

What is usually done to cope with this? 

– interlocks (slow) 

– or bypassing (needs hardware, doesn’t help 

all hazards) 



How can we guarantee no dependencies between 

instructions in a pipeline? 

-- One way is to interleave execution of instructions from 

different program threads on same pipeline 
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F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

T1: LW r1, 0(r2) 

T2: ADD r7, r1, r4 

T3: XORI r5, r4, #12 

T4: SW 0(r7),  r5 

T1: LW r5, 12(r1) 

t9 
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Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe 

Prior instruction in 
a thread always 
completes write-
back before next 
instruction in 
same thread reads 
register file 



 First multithreaded hardware 

 10 “virtual” I/O processors 

 Fixed interleave on simple pipeline 

 Pipeline has 100ns cycle time 

 Each virtual processor executes one instruction every 1000ns 

 Accumulator-based instruction set to reduce processor state 
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 Have to carry thread select down pipeline to ensure correct 

state bits read/written at each pipe stage 

 Appears to software (including OS) as multiple, albeit 

slower, CPUs 
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Each thread requires its own user state 

  PC 

  GPRs 

 

Also, needs its own system state 

 Virtual-memory page-table-base register 

 Exception-handling registers 

 

Other overheads: 

 Additional cache/TLB conflicts from competing 

threads 

 (or add larger cache/TLB capacity) 

 More OS overhead to schedule more threads (where 

do all these threads come from?) 
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 Fixed interleave (CDC 6600 PPUs, 1964) 

 Each of N threads executes one instruction every N cycles 

 If thread not ready to go in its slot, insert pipeline bubble 

 

 

 Software-controlled interleave (TI ASC PPUs, 1971) 

 OS allocates S pipeline slots amongst N threads 

 Hardware performs fixed interleave over S slots, executing 

whichever thread is in that slot 

 

 

 Hardware-controlled thread scheduling (HEP, 1982) 

 Hardware keeps track of which threads are ready to go 

 Picks next thread to execute based on hardware priority scheme 
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First commercial machine to use hardware threading in main 

CPU 

 120 threads per processor 

 10 MHz clock rate 

 Up to 8 processors 

 precursor to Tera MTA (Multithreaded Architecture) 
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 Up to 256 processors 

 Up to 128 active threads per processor 

 Processors and memory modules populate a 

sparse 3D torus interconnection fabric 

 Flat, shared main memory 

  No data cache 

  Sustains one main memory access per 

cycle per processor 

 GaAs logic in prototype, 1KW/processor @ 

260MHz 

 Second version CMOS, MTA-2, 50W/processor 

 New version, XMT, fits into AMD Opteron 

socket, runs at 500MHz 
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Memory pipeline 

Issue Pool 
• Every cycle, one 
VLIW instruction from 
one active thread is 
launched into pipeline 
• Instruction pipeline 
is 21 cycles long 
• Memory operations 
incur ~150 cycles of 
latency 

Assuming a single thread issues one 
instruction every 21 cycles, and clock 
rate is 260 MHz… 
What is single-thread performance?  

Effective single-thread issue rate 
is 260/21 = 12.4 MIPS 



Tera MTA designed for supercomputing applications 

with large data sets and low locality 

 No data cache 

 Many parallel threads needed to hide large memory 

latency 

 

Other applications are more cache friendly 

 Few pipeline bubbles if cache mostly has hits 

 Just add a few threads to hide occasional cache miss 

latencies 

 Swap threads on cache misses 
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 Modified SPARC chips 

 register windows hold different 

thread contexts 

 Up to four threads per node 

 Thread switch on local cache miss 
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 Commercial coarse-grain multithreading CPU 

 Based on PowerPC with quad-issue in-order five-stage 

pipeline 

 Each physical CPU supports two virtual CPUs 

 On L2 cache miss, pipeline is flushed and execution 

switches to second thread 

 short pipeline minimizes flush penalty (4 cycles), small 

compared to memory access latency 

 flush pipeline to simplify exception handling 
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 Target is datacenters running web servers and databases, with many 

concurrent requests 

 Provide multiple simple cores each with multiple hardware threads, 

reduced energy/operation though much lower single thread performance 

 

 Niagara-1 [2004], 8 cores, 4 threads/core 

 Niagara-2 [2007], 8 cores, 8 threads/core 

 Niagara-3 [2009], 16 cores, 8 threads/core 

 T4 [2011], 8 cores, 8 threads/core 

 T5 [2012], 16 cores, 8 threads/core 
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 Techniques presented so far have all been “vertical” multithreading where 

each pipeline stage works on one thread at a time 

 SMT uses fine-grain control already present inside an OoO superscalar to 

allow instructions from multiple threads to enter execution on same clock 

cycle.  Gives better utilization of machine resources. 
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From: Tullsen, Eggers, and Levy, 

“Simultaneous Multithreading: 

Maximizing On-chip Parallelism”, 

ISCA 1995. 

For an 8-way 

superscalar. 
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Issue width 
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i.e., IPC < 4 
(horizontal waste) 



 What is the effect of cycle-by-cycle interleaving? 

 removes vertical waste, but leaves some horizontal waste 
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 What is the effect of splitting into multiple processors? 

 reduces horizontal waste,  

 leaves some vertical waste, and  

 puts upper limit on peak throughput of each thread. 
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 Interleave multiple threads to multiple issue slots with 

no restrictions 
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 Add multiple contexts and fetch engines and allow 

instructions fetched from different threads to issue 

simultaneously 

 Utilize wide out-of-order superscalar processor issue 

queue to find instructions to issue from multiple threads 

 OOO instruction window already has most of the circuitry 

required to schedule from multiple threads 

 Any single thread can utilize whole machine 
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Single-threaded predecessor to 

Power 5.  8 execution units in 

out-of-order engine, each may 

issue an instruction each cycle. 
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Power 4 

Power 5 

2 fetch (PC), 

2 initial decodes 

2 commits 

(architected 

register sets) 
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Why only 2 threads? With 4, one of the shared 

resources (physical registers, cache, memory 

bandwidth) would be prone to bottleneck  



 Increased associativity of L1 instruction cache and the 

instruction address translation buffers  

 Added per-thread load and store queues  

 Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches 

 Added separate instruction prefetch and buffering per thread 

 Increased the number of virtual registers from 152 to 240 

 Increased the size of several issue queues 

 The Power5 core is about 24% larger than the Power4 core 

because of the addition of SMT support 
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 First commercial SMT design (2-way SMT) 

 Hyperthreading == SMT 

 Logical processors share nearly all resources of the 

physical processor 

 Caches, execution units, branch predictors 

 Die area overhead of hyperthreading  ~ 5% 

 When one logical processor is stalled, the other can make 

progress 

 No logical processor can use all entries in queues when two threads 

are active 

 Processor running only one active software thread runs at 

approximately same speed with or without hyperthreading 

 Hyperthreading dropped on OoO P6 based followons  to 

Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until 

revived with Nehalem generation machines in 2008. 

 Intel Atom (in-order x86 core) has two-way vertical 

multithreading 
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 Pentium 4 Extreme SMT yields 1.01 speedup for 

SPECint_rate benchmark and 1.07 for SPECfp_rate 

 Pentium 4 is dual threaded SMT 

 SPECRate requires that each SPEC benchmark be run against a 

vendor-selected number of copies of the same benchmark 

 Running on Pentium 4 each of 26 SPEC benchmarks paired 

with every other (26
2
 runs) speed-ups from 0.90 to 1.58; 

average was 1.20 

 Power 5, 8-processor server 1.23 faster for SPECint_rate 

with SMT, 1.16 faster for SPECfp_rate 

 Power 5 running 2 copies of each app speedup between 

0.89 and 1.41 

 Most gained some 

 Fl.Pt. apps had most cache conflicts and least gains 
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For regions with high thread 

level parallelism (TLP) entire 

machine width is shared by all 

threads 
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For regions with low thread level 

parallelism (TLP) entire machine 

width is available for instruction 

level parallelism (ILP) 
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Why does this enhance throughput? 

Fetch from thread with the least instructions in flight. 
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 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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