

 In a classic VLIW, compiler is responsible for avoiding all hazards ->

simple hardware, complex compiler. Later VLIWs added more dynamic

hardware interlocks

 Use loop unrolling and software pipelining for loops, trace scheduling for

more irregular code

 Static scheduling difficult in presence of unpredictable branches and

variable latency memory

2

 Difficult to continue to extract instruction-level parallelism (ILP) from a

single sequential thread of control

 Many workloads can make use of thread-level parallelism (TLP)

 TLP from multiprogramming (run independent sequential

jobs)

 TLP from multithreaded applications (run one job faster

using parallel threads)

 Multithreading uses TLP to improve utilization of a single processor

3

 Each instruction may depend on the next

4

LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D

F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

What is usually done to cope with this?

– interlocks (slow)

– or bypassing (needs hardware, doesn’t help

all hazards)

How can we guarantee no dependencies between

instructions in a pipeline?

-- One way is to interleave execution of instructions from

different program threads on same pipeline

5

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW 0(r7), r5

T1: LW r5, 12(r1)

t9

F D X M W

F D X M W

F D X M W

F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

 First multithreaded hardware

 10 “virtual” I/O processors

 Fixed interleave on simple pipeline

 Pipeline has 100ns cycle time

 Each virtual processor executes one instruction every 1000ns

 Accumulator-based instruction set to reduce processor state

6

 Have to carry thread select down pipeline to ensure correct

state bits read/written at each pipe stage

 Appears to software (including OS) as multiple, albeit

slower, CPUs

7

+1

2 Threa

d

select

PC

1
PC

1
PC

1
PC

1

I$ IR
GPR1

GPR1
GPR1

GPR1

X

Y

2

D$

Each thread requires its own user state

 PC

 GPRs

Also, needs its own system state

 Virtual-memory page-table-base register

 Exception-handling registers

Other overheads:

 Additional cache/TLB conflicts from competing

threads

 (or add larger cache/TLB capacity)

 More OS overhead to schedule more threads (where

do all these threads come from?)

8

 Fixed interleave (CDC 6600 PPUs, 1964)

 Each of N threads executes one instruction every N cycles

 If thread not ready to go in its slot, insert pipeline bubble

 Software-controlled interleave (TI ASC PPUs, 1971)

 OS allocates S pipeline slots amongst N threads

 Hardware performs fixed interleave over S slots, executing

whichever thread is in that slot

 Hardware-controlled thread scheduling (HEP, 1982)

 Hardware keeps track of which threads are ready to go

 Picks next thread to execute based on hardware priority scheme

9

First commercial machine to use hardware threading in main

CPU

 120 threads per processor

 10 MHz clock rate

 Up to 8 processors

 precursor to Tera MTA (Multithreaded Architecture)

10

 Up to 256 processors

 Up to 128 active threads per processor

 Processors and memory modules populate a

sparse 3D torus interconnection fabric

 Flat, shared main memory

 No data cache

 Sustains one main memory access per

cycle per processor

 GaAs logic in prototype, 1KW/processor @

260MHz

 Second version CMOS, MTA-2, 50W/processor

 New version, XMT, fits into AMD Opteron

socket, runs at 500MHz

11

12

A

W

C

W

M

Inst Fetch

M
e
m

o
ry

 P
o
o
l

Retry Pool

Interconnection Network

W
ri

te
 P

o
o
l

W

Memory pipeline

Issue Pool
• Every cycle, one
VLIW instruction from
one active thread is
launched into pipeline
• Instruction pipeline
is 21 cycles long
• Memory operations
incur ~150 cycles of
latency

Assuming a single thread issues one
instruction every 21 cycles, and clock
rate is 260 MHz…
What is single-thread performance?

Effective single-thread issue rate
is 260/21 = 12.4 MIPS

Tera MTA designed for supercomputing applications

with large data sets and low locality

 No data cache

 Many parallel threads needed to hide large memory

latency

Other applications are more cache friendly

 Few pipeline bubbles if cache mostly has hits

 Just add a few threads to hide occasional cache miss

latencies

 Swap threads on cache misses

13

 Modified SPARC chips

 register windows hold different

thread contexts

 Up to four threads per node

 Thread switch on local cache miss

14

 Commercial coarse-grain multithreading CPU

 Based on PowerPC with quad-issue in-order five-stage

pipeline

 Each physical CPU supports two virtual CPUs

 On L2 cache miss, pipeline is flushed and execution

switches to second thread

 short pipeline minimizes flush penalty (4 cycles), small

compared to memory access latency

 flush pipeline to simplify exception handling

15

 Target is datacenters running web servers and databases, with many

concurrent requests

 Provide multiple simple cores each with multiple hardware threads,

reduced energy/operation though much lower single thread performance

 Niagara-1 [2004], 8 cores, 4 threads/core

 Niagara-2 [2007], 8 cores, 8 threads/core

 Niagara-3 [2009], 16 cores, 8 threads/core

 T4 [2011], 8 cores, 8 threads/core

 T5 [2012], 16 cores, 8 threads/core

16

17

 Techniques presented so far have all been “vertical” multithreading where

each pipeline stage works on one thread at a time

 SMT uses fine-grain control already present inside an OoO superscalar to

allow instructions from multiple threads to enter execution on same clock

cycle. Gives better utilization of machine resources.

18

19

From: Tullsen, Eggers, and Levy,

“Simultaneous Multithreading:

Maximizing On-chip Parallelism”,

ISCA 1995.

For an 8-way

superscalar.

20

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

 What is the effect of cycle-by-cycle interleaving?

 removes vertical waste, but leaves some horizontal waste

21

Issue width

Time

Second thread

interleaved cycle-by-

cycle

Instructio

n issue

Partially filled

cycle, i.e., IPC < 4

(horizontal waste)

 What is the effect of splitting into multiple processors?

 reduces horizontal waste,

 leaves some vertical waste, and

 puts upper limit on peak throughput of each thread.

22

Issue

width

Time

 Interleave multiple threads to multiple issue slots with

no restrictions

23

Issue width

Time

 Add multiple contexts and fetch engines and allow

instructions fetched from different threads to issue

simultaneously

 Utilize wide out-of-order superscalar processor issue

queue to find instructions to issue from multiple threads

 OOO instruction window already has most of the circuitry

required to schedule from multiple threads

 Any single thread can utilize whole machine

24

25

Single-threaded predecessor to

Power 5. 8 execution units in

out-of-order engine, each may

issue an instruction each cycle.

26

Power 4

Power 5

2 fetch (PC),

2 initial decodes

2 commits

(architected

register sets)

27

Why only 2 threads? With 4, one of the shared

resources (physical registers, cache, memory

bandwidth) would be prone to bottleneck

 Increased associativity of L1 instruction cache and the

instruction address translation buffers

 Added per-thread load and store queues

 Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches

 Added separate instruction prefetch and buffering per thread

 Increased the number of virtual registers from 152 to 240

 Increased the size of several issue queues

 The Power5 core is about 24% larger than the Power4 core

because of the addition of SMT support

28

 First commercial SMT design (2-way SMT)

 Hyperthreading == SMT

 Logical processors share nearly all resources of the

physical processor

 Caches, execution units, branch predictors

 Die area overhead of hyperthreading ~ 5%

 When one logical processor is stalled, the other can make

progress

 No logical processor can use all entries in queues when two threads

are active

 Processor running only one active software thread runs at

approximately same speed with or without hyperthreading

 Hyperthreading dropped on OoO P6 based followons to

Pentium-4 (Pentium-M, Core Duo, Core 2 Duo), until

revived with Nehalem generation machines in 2008.

 Intel Atom (in-order x86 core) has two-way vertical

multithreading

29

 Pentium 4 Extreme SMT yields 1.01 speedup for

SPECint_rate benchmark and 1.07 for SPECfp_rate

 Pentium 4 is dual threaded SMT

 SPECRate requires that each SPEC benchmark be run against a

vendor-selected number of copies of the same benchmark

 Running on Pentium 4 each of 26 SPEC benchmarks paired

with every other (26
2
 runs) speed-ups from 0.90 to 1.58;

average was 1.20

 Power 5, 8-processor server 1.23 faster for SPECint_rate

with SMT, 1.16 faster for SPECfp_rate

 Power 5 running 2 copies of each app speedup between

0.89 and 1.41

 Most gained some

 Fl.Pt. apps had most cache conflicts and least gains

30

For regions with high thread

level parallelism (TLP) entire

machine width is shared by all

threads

31

Issue width

Time

Issue width

Time

For regions with low thread level

parallelism (TLP) entire machine

width is available for instruction

level parallelism (ILP)

32

Why does this enhance throughput?

Fetch from thread with the least instructions in flight.

33

T
im

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

34

