ARCHITECTURE OF
COMPUTER SYSTEMS
IFCEURE T EN1IAW
MACHINES AND

STATICALLY
SCHEDULED ILP

LAST 11ME LN
]-U;E;’gd Iug‘gst]r Zé machines remove data

values from ROB
= All values only read and written during execution

= Only register tags held in ROB

= Allocate resources (ROB slot, destination physical register,
memory reorder queue location) during decode

= [ssue window can be separated from ROB and made smaller
than ROB (allocate in decode, free after instruction
completes)

= Free resources on commit

= Speculative store buffer holds store values before
commit to allow load-store forwarding

= Can execute later loads past earlier stores when
addresses known, or predicted no dependence

QUPFEROULALARN CUNIRUL
LOGIC SGAMMG

Issue Group |

Previously
Issued

Instructions |
= Each issued instruction must somehow check against W*L
instructions, i.e., growth in hardware o« W*(W*L)

1 L Lifetimel

= For in-order machines, L is related to pipeline latencies and
check is done during issue (interlocks or scoreboard)

= For out-of-order machines, L also includes time spent in
instruction buffers (instruction window or ROB), and check is
done by broadcasting tags to waiting instructions at write
back (completion)

= As W increases, larger instruction window is needed to find
enough parallelism to keep machine busy => greater L

=> Qut-of-order control logic grows faster than W? (~W3) @

MIPS R]_ | IIlStﬁfﬁtion '

Cache

Ddtd
Cache

Control
Logic

Register il
Rename Integer
Queile.
[SGI/MIPS Technologies
Inc., 1995]|

DLUULINILIAL DA
BOTT

Sequential
source code

a = foo(b);
for (i=0, i<

Sequential

macﬁde

VLIW: VERY LONG

Int Op 1 FPop1_ | FPOp 2
:]] v
]]]]] .
Two Integer Units,]]] -
Single Cycle Latency]]] []
Two Load/Store Units, L] .
Three Cycle Latency Two Floating-Point Units,

- Multiple operations packed it Griéateney
instruction

= Each operation slot is for a fixed function

 Constant operation latencies are specified

= Architecture requires guarantee of:
= Parallelism within an instruction => no cross-operation RAW

check
= No data use before data ready => no data interlocks @

EARLY VLIW
PGNP

= scientific attached array processor
= first commercial wide instruction machine

= hand-coded vector math libraries using software pipelining
and loop unrolling

= Multiflow Trace (1987)

= commercialization of ideas from Fisher’s Yale group
including “trace scheduling”

= available in configurations with 7, 14, or 28
operations/instruction

= 28 operations packed into a 1024-bit instruction word

= Cydrome Cydra-5 (1987)

= 7 operations encoded in 256-bit instruction word
= rotating register file

VLIW COMPILER
RESPONSIBILITIES

=Schedule operations to maximize parallel
execution

=Guarantees intra-instruction parallelism

=Schedule to avoid data hazards (no interlocks)
= Typically separates operations with explicit NOPs

LOOP EXECUTION

for (i=0; i<N; i++) It
B[i] = A[i] + C; Intl 5~ M1 M2 FP+ FPx
loop:
l Compile P d x1 fld\\
loop: fld f1, 0(x1) \,
add x1, 8 /fadd
fadd f2, fo, f1 ~ Schedule //
fsd 2, 0(x2) B
add x2, 8 p
bne x1, X3, d x2bne | fsd
loop

How many FP ops/cycle?

LOOP UNROLLING

for (i=0; i<N; i++)

B

i1 = A[i] + C;

Unroll inner loop to perform 4

iterations at once

{

}

for (i=0; i<N; i+=4)

B[i]
B
B
B

[i+1] = A[i+1] + C;
[i+2] = A[i+2] + C;
[i+3] = A[i+3] + C;

= A[i] + C;

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

e

UL AILE U LLLINAT L\JU\UJUL

ﬂd f2, 8(x1)

fld £3, 16(x1)
fld f4, 24(x1)

add x1, 32
fadd f5, f0, f1
fadd fe, f0, f2
fadd 7, f0, 3
fadd f8, f0, f4
fsd £5, 0(x2)
fsd f6, 8(x2)
fsd £7, 16(x2)
fsd 8, 24(x2)
add x2, 32
bne x1, x3,

Kporv many FLO

loop:

Schedule

PS/cycle?

4 fadds / 11 cycles =

Int

OLLED CODE

Intl M1 M2 FP+ FPx
fld f1_
fld £2 "\
fld 3
d x1 fld f4 fadd f5
fadd f6
/ tadd f7
/ fadd f8
fsd 5
fsd 6
fsd 7
d x2 bne |fsd f8
0.36

=)

sl L VYV AN
o BBELINING. ¢
nt
: ntl M1 M2 FP+ FPx
daref y > —
add x1, 32 fig f;
fadd f5, fO,
fl i lnas
X
: fadd f6, £0, prolog< s T
2
fld f2 fadd f6
£3 fadd £7, 10, fld f3 fadd f7
fadd f8, fO, > dd x1 fld f4 fadd {8
f4 . loop
1terate
fsd f5, {
0(x2)
fsd f6,
8(x2) ’ fsd f5fadd 5
fsd f7 epilo fsd fefadd 16
16(x2) ’ . g_< add x fsd f7fadd {7
[. QCFIEZJI%Zf 5 bne fsd f&fadd {8
: yele: fsd 5

4 faddsif&}-cycles = 1

8(x2)

T o o - "1 -

PIPELINING VS.
LOQOP
UNROT_H_E‘IN@ Wind-down overhead

performance ‘/\\‘ /

AN AT N 41\

Startup overhééd

) Loop Iteratic;n time
Software Pipelined
performance
/I (RN B
Loop * time

Iteration
Software pipelining pays startup/wind-down

costs only once per loop, not once per iteration

WHA'T IF THERE ARE
NO LOOPS?

= Branches limit basic block size
in control-flow intensive
irregular code

= Difficult to find ILP in

\/ individual basic blocks
/ —

Basic block

N

/

1 RACLL
/j S C H ED ULI N G [FISHER,ELLIS]

= Pick string of basic blocks, a trace, that
represents most frequent branch path

= Use profiling feedback or compiler
heuristics to find common branch
paths

\/ = Schedule whole “trace” at once
~

= Add fixup code to cope with branches
jumping out of trace

N

/

G

FRUDLEIO YW1lTl
“CLASSIC” VLIW

= Object-code compatibility
= have to recompile all code for every machine, even for two
machines in same generation

= Object code size
= instruction padding wastes instruction memory/cache

= loop unrolling/software pipelining replicates code

= Scheduling variable latency memory operations

= caches and/or memory bank conflicts impose statically
unpredictable variability

= Knowing branch probabilities
= Profiling requires an significant extra step in build process

= Scheduling for statically unpredictable branches
= optimal schedule varies with branch path

VLIW INS1TRUCULTIUN
ENCODING

[
Y Yy

Group 1 Group 2 Group 3

=Schemes to reduce effect of unused fields
= Compressed format in memory, expand on I-cache refill
= used in Multiflow Trace
= introduces instruction addressing challenge
= Mark parallel groups
= used in TMS320C6x DSPs, Intel IA-64
= Provide a single-op VLIW instruction
= Cydra-5 UniOp instructions

s

INTEL ITANIUM, EPIC
[A-64

= EPIC is the style of architecture (cf. CISC, RISC)
= Explicitly Parallel Instruction Computing (really just VLIW)

= JA-64 is Intel’s chosen ISA (cf. x86, MIPS)
= JA-64 = Intel Architecture 64-bit
= An object-code-compatible VLIW

= Merced was first Itanium implementation (cf. 8086)
= First customer shipment expected 1997 (actually 2001)

= McKinley, second implementation shipped in 2002
= Recent version, Poulson, eight cores, 32nm, announced 2011

EIGHT CORE ITANIUM
“POULSON

.

“FIbaharn“.'.:.; i

-

- | &
2 BN 2
A \‘. :

!H' T ﬂi”!lt!ﬂi

] «

S"”
'iEes
2

B |]
55 AEaR-anm
b
?' .l :
2 NE
X T P T
-

7‘0-..

= 8 cores - Cores are 2-way
« 1-cycle 16KB L1 I&D caches multithreaded

= 9-cycle 512KB L2 I-cache * 6 instruction/cycle fetch
- 8-cycle 256KB L2 D-cache * Two 128-bit bundles
= 32 MB shared L3 cache = Up to 12 insts/cycle execute

= 544mm? in 32nm CMOS
= QOver 3 billion transistors

1A-04 INSITRUCITIUN
FORMAT

|Instruction 2 | Instruction 1 | Instruction 0 Template |

\/

128-bit instruction bundle

= Template bits describe grouping of these instructions
with others in adjacent bundles

= Each group contains instructions that can execute in
parallel

B3 AR R e A IR

group i-1 group i group i+1 group i+2

[A-64 REGISTERS

= 128 General Purpose 64-bit Integer Registers

= 128 General Purpose 64/80-bit Floating Point
Registers

= 64 1-bit Predicate Registers

= GPRs “rotate” to reduce code size for software
pipelined loops
= Rotation is a simple form of register renaming allowing
one instruction to address different physical registers
on each iteration

IA-UT TROUICA L LD

Pr TM{S icfée es limit ILP
"EXPEYTION

ion: Eliminate hard to predict branches with predicated

execution

= Almost all IA-64 instructions can be executed conditionally

under predicate

= Instruction becomes NOP if predicate register false

b0O: Inst 1 if

Inst 2

br a==b, b2
bl:Inst 3 else

Inst 4 l

br b3

b2! Inst 5
Inst 6 then D

b3! Inst 7
Inst 8

Four basic blocks

Inst 1
Inst 2
pl,p2 <- cmp(a==b)

(pl) Inst 3 || (p2)
Predicatio> Iﬂst 5 P

(pl) Inst4 || (p2)
Inst 6
Inst 7

Instshe basic block

Mahlke et al, ISCA95: On
average >50% branches removed

L

FULLY BYPASSED
DATAPATH.... .

nop ™ l £ l M ;lYV
ASrc L — 3 M-
y N
V_we
4 rsi
rs2 v
— »laddr D rdlp =—- V-we
inst WS .
ins WY e \J addr
-2

\AA 4

y

Inst GPRs rdata
Data
Memory >

Memory,
Imm
Ext |~ " wdata
BSrc

\ 4

MD1 MD2

Where does predication fit in?

IA-U4a orcCuL ALV D

EXECUTION

Problem: Branches restrict compiler code motion
Solution: Speculative operations that don’t cause exceptions

Speculative
load never
Inst 1 Load.s rk—— causes
Inst 2 Inst 1 exception, but
br a==b, b2 Inst 2 sets “poison” bit
1 br a==b, b2 on destination
Load r1 1 gﬁﬁ in
Elsset 1‘31 Chk.sl | original home
Use rl block jumps to
Can’t move load above Inst 3 fixup code if

branch because might exception detected
cause spurious exception

Particularly useful for scheduling long latency loads early

@

IA-U4a A1 A

SPECULATION

Problem: Possible memory hazards limit code scheduling
Solution: Hardware to check pointer hazards

Inst 1
Inst 2
Store

Load rl
Userl
Inst 3

Can’t move load above
store because store might
be to same address

lLoad.ark——
Inst 1
Inst 2

Storet |

Data speculative
load adds address
to address check

“tabl

§tore invalidates
any matching
loads in address

Load.
Use rf\

Inst 3

check table

~Check if load invalid
(or missing), jump to
fixup code if so

Requires associative hardware in address check table

@

LIMITS OF 5TATIC
SRR LN s

= Variable memory latency (unpredictable
cache misses)

=Code size explosion
= Compiler complexity

Despite several attempts, VLIW has failed in
general-purpose computing arena (so far).

= More complex VLIW architectures close to in-order
superscalar in complexity, no real advantage on large
complex apps.

Successful in embedded DSP market

= Simpler VLIWs with more constrained environment,
friendlier code.

L

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

)

