
 

 



 Unified physical register file machines remove data 

values from ROB 

 All values only read and written during execution 

 Only register tags held in ROB 

 Allocate resources (ROB slot, destination physical register, 

memory reorder queue location) during decode 

 Issue window can be separated from ROB and made smaller 

than ROB (allocate in decode, free after instruction 

completes) 

 Free resources on commit 

 Speculative store buffer holds store values before 

commit to allow load-store forwarding 

 Can execute later loads past earlier stores when 

addresses known, or predicted no dependence 
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 Each issued instruction must somehow check against W*L 

instructions, i.e., growth in hardware  W*(W*L) 

 For in-order machines, L is related to pipeline latencies and 

check is done during issue (interlocks or scoreboard) 

 For out-of-order machines, L also includes time spent in 

instruction buffers (instruction window or ROB), and check is 

done by broadcasting tags to waiting instructions at write 

back (completion) 

 As W increases, larger instruction window is needed to find 

enough parallelism to keep machine busy => greater L 

=> Out-of-order control logic grows faster than W
2
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Control 
Logic 

[ SGI/MIPS Technologies 
Inc., 1995 ] 
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Check instruction 
dependencies 

Superscalar processor 

a = foo(b); 
for (i=0, i< 

Sequential 
source code 

Superscalar compiler 

Find independent 
operations 

Schedule 
operations 

Sequential 
machine code 

Schedule 
execution 



Multiple operations packed into one 

instruction 

Each operation slot is for a fixed function 

Constant operation latencies are specified 

Architecture requires guarantee of: 

 Parallelism within an instruction => no cross-operation RAW 

check 

 No data use before data ready => no data interlocks 
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Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 
Three Cycle Latency Two Floating-Point Units, 

Four Cycle Latency 

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1 



FPS AP120B (1976) 

 scientific attached array processor 

 first commercial wide instruction machine 

 hand-coded vector math libraries using software pipelining 

and loop unrolling 

Multiflow Trace (1987) 

 commercialization of ideas from Fisher’s Yale group 

including “trace scheduling” 

 available in configurations with 7, 14, or 28 

operations/instruction 

 28 operations packed into a 1024-bit instruction word 

Cydrome Cydra-5 (1987) 

 7 operations encoded in 256-bit instruction word 

 rotating register file 
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Schedule operations to maximize parallel 

execution 

 

Guarantees intra-instruction parallelism 

 

Schedule to avoid data hazards (no interlocks) 

 Typically separates operations with explicit NOPs 
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How many FP ops/cycle? 
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for (i=0; i<N; i++) 
    B[i] = A[i] + C; 

Int1 
Int 
2 

M1 M2 FP+ FPx 

loop: fld  add x1 

fadd  

fsd  add x2  bne  

1 fadd / 8 cycles = 0.125 

loop:   fld f1, 0(x1) 
          add x1, 8 
          fadd f2, f0, f1 
          fsd f2, 0(x2) 
          add x2, 8 
          bne x1, x3, 
loop 

Compile 

Schedule 
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for (i=0; i<N; i++) 
    B[i] = A[i] + C; 

for (i=0; i<N; i+=4) 
{ 
    B[i]     = A[i] + C; 
    B[i+1] = A[i+1] + C; 
    B[i+2] = A[i+2] + C; 
    B[i+3] = A[i+3] + C; 
} 

Unroll inner loop to perform 4 
iterations at once 

Need to handle values of N that are not multiples 
of unrolling factor with final cleanup loop 
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loop:  fld f1, 0(x1) 

           fld f2, 8(x1) 

           fld f3, 16(x1) 

           fld f4, 24(x1) 

           add x1, 32 

           fadd f5, f0, f1 

           fadd f6, f0, f2  

           fadd f7, f0, f3  

           fadd f8, f0, f4 

           fsd f5, 0(x2) 

           fsd f6, 8(x2) 

           fsd f7, 16(x2) 

           fsd f8, 24(x2) 

add x2, 32 

           bne x1, x3, 

loop 

Schedule 

Int1 
Int 
2 

M1 M2 FP+ FPx 

loop: 

Unroll 4 ways 

fld f1 

fld f2 

fld f3 

fld f4 add x1 fadd f5 

fadd f6 

fadd f7 

fadd f8 

fsd f5 

fsd f6 

fsd f7 

fsd f8 add x2 bne 

How many FLOPS/cycle? 

4 fadds / 11 cycles = 0.36 



How many FLOPS/cycle? 
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loop:  fld f1, 0(x1) 

           fld f2, 8(x1) 

           fld f3, 

16(x1) 

           fld f4, 

24(x1) 

           add x1, 32 

           fadd f5, f0, 

f1 

           fadd f6, f0, 

f2  

           fadd f7, f0, 

f3  

           fadd f8, f0, 

f4 

           fsd f5, 

0(x2) 

           fsd f6, 

8(x2) 

           fsd f7, 

16(x2) 

           add x2, 32 

           fsd f8, -

8(x2) 

           bne x1, x3, 

loop 

Int1 
Int 

2 
M1 M2 FP+ FPx Unroll 4 ways first 
fld f1 

fld f2 

fld f3 

fld f4 

fadd f5 

fadd f6 

fadd f7 

fadd f8 

fsd f5 

fsd f6 

fsd f7 

fsd f8 

add x1 

add x2 

bne 

fld f1 

fld f2 

fld f3 

fld f4 

fadd f5 

fadd f6 

fadd f7 

fadd f8 

fsd f5 

fsd f6 

fsd f7 

fsd f8 

add x1 

add x2 

bne 

fld f1 

fld f2 

fld f3 

fld f4 

fadd f5 

fadd f6 

fadd f7 

fadd f8 

fsd f5 

add x1 

loop: 
iterate 

prolog 

epilog 

4 fadds / 4 cycles = 1 
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time 

performance 

time 

performance 

Loop Unrolled 

Software Pipelined 

Startup overhead 

Wind-down overhead 

Loop Iteration 

Loop 
Iteration 

Software pipelining pays startup/wind-down 
costs only once per loop, not once per iteration 



 Branches limit basic block size 

in control-flow intensive 

irregular code 

 Difficult to find ILP in 

individual basic blocks 
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Basic block 



 Pick string of basic blocks, a trace, that 

represents most frequent branch path 

 Use profiling feedback or compiler 

heuristics to find common branch 

paths  

 Schedule whole “trace” at once 

 Add fixup code to cope with branches 

jumping out of trace 
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 Object-code compatibility 

 have to recompile all code for every machine, even for two 

machines in same generation 

 Object code size 

 instruction padding wastes instruction memory/cache 

 loop unrolling/software pipelining replicates code 

 Scheduling variable latency memory operations 

 caches and/or memory bank conflicts impose statically 

unpredictable variability 

 Knowing branch probabilities 

 Profiling requires an significant extra step in build process 

 Scheduling for statically unpredictable branches 

 optimal schedule varies with branch path 
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Schemes to reduce effect of unused fields 

 Compressed format in memory, expand on I-cache refill 

 used in Multiflow Trace 

 introduces instruction addressing challenge 

 Mark parallel groups 

 used in TMS320C6x DSPs, Intel IA-64 

 Provide a single-op VLIW instruction 

  Cydra-5 UniOp instructions 
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Group 1 Group 2 Group 3 



 EPIC is the style of architecture (cf. CISC, RISC) 

 Explicitly Parallel Instruction Computing (really just VLIW) 

 IA-64 is Intel’s chosen ISA (cf. x86, MIPS) 

 IA-64 = Intel Architecture 64-bit 

 An object-code-compatible VLIW 

 Merced was first Itanium implementation (cf. 8086) 

 First customer shipment expected 1997 (actually 2001) 

 McKinley, second implementation shipped in 2002 

 Recent version, Poulson, eight cores, 32nm, announced 2011 
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 8 cores 

 1-cycle 16KB L1 I&D caches 

 9-cycle 512KB L2 I-cache 

 8-cycle 256KB L2 D-cache 

 32 MB shared L3 cache 

 544mm
2
 in 32nm CMOS 

 Over 3 billion transistors 

 Cores are 2-way 

multithreaded 

 6 instruction/cycle fetch 

 Two 128-bit bundles 

 Up to 12 insts/cycle execute 
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 Template bits describe grouping of these instructions 

with others in adjacent bundles 

 Each group contains instructions that can execute in 

parallel 
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Instruction 2 Instruction 1 Instruction 0 Template 

128-bit instruction bundle 

group i group i+1 group i+2 group i-1 

bundle j bundle j+1 bundle j+2 bundle j-1 



 128 General Purpose 64-bit Integer Registers 

 128 General Purpose 64/80-bit Floating Point 

Registers 

 64 1-bit Predicate Registers 

 

 GPRs “rotate” to reduce code size for software 

pipelined loops 

 Rotation is a simple form of register renaming allowing 

one instruction to address different physical registers 

on each iteration 
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Problem: Mispredicted branches limit ILP 

Solution: Eliminate hard to predict branches with predicated 

execution 

 Almost all IA-64 instructions can be executed conditionally 

under predicate 

 Instruction becomes NOP if predicate register false 
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Inst 1 

Inst 2 

br a==b, b2 

Inst 3 

Inst 4 

br b3 

Inst 5 

Inst 6 

 

Inst 7 

Inst 8 

 

b0: 

b1: 

b2: 

b3: 

if 

else 

then 

Four basic blocks 

Inst 1 

Inst 2 

p1,p2 <- cmp(a==b) 

(p1) Inst 3     ||   (p2) 

Inst 5 

(p1) Inst 4     ||   (p2) 

Inst 6 

Inst 7 

Inst 8 

Predication 

One basic block 

Mahlke et al, ISCA95: On 
average >50% branches removed 
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Where does predication fit in? 



Problem: Branches restrict compiler code motion 
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Inst 1 

Inst 2 

br a==b, b2 

Load r1 

Use r1 

Inst 3 

Can’t move load above 

branch because might 

cause spurious exception 

Load.s r1 

Inst 1 

Inst 2 

br a==b, b2 

Chk.s r1 

Use r1 

Inst 3 

Speculative 

load never 

causes 

exception, but 

sets “poison” bit 

on destination 

register 
Check for 

exception in 

original home 

block jumps to 

fixup code if 

exception detected 

Particularly useful for scheduling long latency loads early 

Solution: Speculative operations that don’t cause exceptions 



Problem: Possible memory hazards limit code scheduling 
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Requires associative hardware in address check table 

Inst 1 

Inst 2 

Store 

Load r1 

Use r1 

Inst 3 

Can’t move load above 

store because store might 

be to same address 

Load.a r1 

Inst 1 

Inst 2 

Store 

Load.c 

Use r1 

Inst 3 

Data speculative 

load adds address 

to address check 

table 

Store invalidates 

any matching 

loads in address 

check table 

Check if load invalid 

(or missing), jump to 

fixup code if so 

Solution: Hardware to check pointer hazards 



Unpredictable branches 

Variable memory latency (unpredictable 

cache misses) 

Code size explosion 

Compiler complexity 

Despite several attempts, VLIW has failed in 

general-purpose computing arena (so far). 

 More complex VLIW architectures close to in-order 

superscalar in complexity, no real advantage on large 

complex apps. 

Successful in embedded DSP market 

 Simpler VLIWs with more constrained environment, 

friendlier code. 
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 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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