

 Unified physical register file machines remove data

values from ROB

 All values only read and written during execution

 Only register tags held in ROB

 Allocate resources (ROB slot, destination physical register,

memory reorder queue location) during decode

 Issue window can be separated from ROB and made smaller

than ROB (allocate in decode, free after instruction

completes)

 Free resources on commit

 Speculative store buffer holds store values before

commit to allow load-store forwarding

 Can execute later loads past earlier stores when

addresses known, or predicted no dependence

2

 Each issued instruction must somehow check against W*L

instructions, i.e., growth in hardware  W*(W*L)

 For in-order machines, L is related to pipeline latencies and

check is done during issue (interlocks or scoreboard)

 For out-of-order machines, L also includes time spent in

instruction buffers (instruction window or ROB), and check is

done by broadcasting tags to waiting instructions at write

back (completion)

 As W increases, larger instruction window is needed to find

enough parallelism to keep machine busy => greater L

=> Out-of-order control logic grows faster than W
2
 (~W

3
) 3

Lifetime L

Issue Group

Previously
Issued
Instructions

Issue Width W

4

Control
Logic

[SGI/MIPS Technologies
Inc., 1995]

5

Check instruction
dependencies

Superscalar processor

a = foo(b);
for (i=0, i<

Sequential
source code

Superscalar compiler

Find independent
operations

Schedule
operations

Sequential
machine code

Schedule
execution

Multiple operations packed into one

instruction

Each operation slot is for a fixed function

Constant operation latencies are specified

Architecture requires guarantee of:

 Parallelism within an instruction => no cross-operation RAW

check

 No data use before data ready => no data interlocks
6

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1

FPS AP120B (1976)

 scientific attached array processor

 first commercial wide instruction machine

 hand-coded vector math libraries using software pipelining

and loop unrolling

Multiflow Trace (1987)

 commercialization of ideas from Fisher’s Yale group

including “trace scheduling”

 available in configurations with 7, 14, or 28

operations/instruction

 28 operations packed into a 1024-bit instruction word

Cydrome Cydra-5 (1987)

 7 operations encoded in 256-bit instruction word

 rotating register file

7

Schedule operations to maximize parallel

execution

Guarantees intra-instruction parallelism

Schedule to avoid data hazards (no interlocks)

 Typically separates operations with explicit NOPs

8

How many FP ops/cycle?

9

for (i=0; i<N; i++)
 B[i] = A[i] + C;

Int1
Int
2

M1 M2 FP+ FPx

loop: fld add x1

fadd

fsd add x2 bne

1 fadd / 8 cycles = 0.125

loop: fld f1, 0(x1)
 add x1, 8
 fadd f2, f0, f1
 fsd f2, 0(x2)
 add x2, 8
 bne x1, x3,
loop

Compile

Schedule

10

for (i=0; i<N; i++)
 B[i] = A[i] + C;

for (i=0; i<N; i+=4)
{
 B[i] = A[i] + C;
 B[i+1] = A[i+1] + C;
 B[i+2] = A[i+2] + C;
 B[i+3] = A[i+3] + C;
}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

11

loop: fld f1, 0(x1)

 fld f2, 8(x1)

 fld f3, 16(x1)

 fld f4, 24(x1)

 add x1, 32

 fadd f5, f0, f1

 fadd f6, f0, f2

 fadd f7, f0, f3

 fadd f8, f0, f4

 fsd f5, 0(x2)

 fsd f6, 8(x2)

 fsd f7, 16(x2)

 fsd f8, 24(x2)

add x2, 32

 bne x1, x3,

loop

Schedule

Int1
Int
2

M1 M2 FP+ FPx

loop:

Unroll 4 ways

fld f1

fld f2

fld f3

fld f4 add x1 fadd f5

fadd f6

fadd f7

fadd f8

fsd f5

fsd f6

fsd f7

fsd f8 add x2 bne

How many FLOPS/cycle?

4 fadds / 11 cycles = 0.36

How many FLOPS/cycle?

12

loop: fld f1, 0(x1)

 fld f2, 8(x1)

 fld f3,

16(x1)

 fld f4,

24(x1)

 add x1, 32

 fadd f5, f0,

f1

 fadd f6, f0,

f2

 fadd f7, f0,

f3

 fadd f8, f0,

f4

 fsd f5,

0(x2)

 fsd f6,

8(x2)

 fsd f7,

16(x2)

 add x2, 32

 fsd f8, -

8(x2)

 bne x1, x3,

loop

Int1
Int

2
M1 M2 FP+ FPx Unroll 4 ways first
fld f1

fld f2

fld f3

fld f4

fadd f5

fadd f6

fadd f7

fadd f8

fsd f5

fsd f6

fsd f7

fsd f8

add x1

add x2

bne

fld f1

fld f2

fld f3

fld f4

fadd f5

fadd f6

fadd f7

fadd f8

fsd f5

fsd f6

fsd f7

fsd f8

add x1

add x2

bne

fld f1

fld f2

fld f3

fld f4

fadd f5

fadd f6

fadd f7

fadd f8

fsd f5

add x1

loop:
iterate

prolog

epilog

4 fadds / 4 cycles = 1

13

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop
Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

 Branches limit basic block size

in control-flow intensive

irregular code

 Difficult to find ILP in

individual basic blocks

14

Basic block

 Pick string of basic blocks, a trace, that

represents most frequent branch path

 Use profiling feedback or compiler

heuristics to find common branch

paths

 Schedule whole “trace” at once

 Add fixup code to cope with branches

jumping out of trace

15

 Object-code compatibility

 have to recompile all code for every machine, even for two

machines in same generation

 Object code size

 instruction padding wastes instruction memory/cache

 loop unrolling/software pipelining replicates code

 Scheduling variable latency memory operations

 caches and/or memory bank conflicts impose statically

unpredictable variability

 Knowing branch probabilities

 Profiling requires an significant extra step in build process

 Scheduling for statically unpredictable branches

 optimal schedule varies with branch path

16

Schemes to reduce effect of unused fields

 Compressed format in memory, expand on I-cache refill

 used in Multiflow Trace

 introduces instruction addressing challenge

 Mark parallel groups

 used in TMS320C6x DSPs, Intel IA-64

 Provide a single-op VLIW instruction

 Cydra-5 UniOp instructions

17

Group 1 Group 2 Group 3

 EPIC is the style of architecture (cf. CISC, RISC)

 Explicitly Parallel Instruction Computing (really just VLIW)

 IA-64 is Intel’s chosen ISA (cf. x86, MIPS)

 IA-64 = Intel Architecture 64-bit

 An object-code-compatible VLIW

 Merced was first Itanium implementation (cf. 8086)

 First customer shipment expected 1997 (actually 2001)

 McKinley, second implementation shipped in 2002

 Recent version, Poulson, eight cores, 32nm, announced 2011

18

 8 cores

 1-cycle 16KB L1 I&D caches

 9-cycle 512KB L2 I-cache

 8-cycle 256KB L2 D-cache

 32 MB shared L3 cache

 544mm
2
 in 32nm CMOS

 Over 3 billion transistors

 Cores are 2-way

multithreaded

 6 instruction/cycle fetch

 Two 128-bit bundles

 Up to 12 insts/cycle execute

19

 Template bits describe grouping of these instructions

with others in adjacent bundles

 Each group contains instructions that can execute in

parallel

20

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

group i group i+1 group i+2 group i-1

bundle j bundle j+1 bundle j+2 bundle j-1

 128 General Purpose 64-bit Integer Registers

 128 General Purpose 64/80-bit Floating Point

Registers

 64 1-bit Predicate Registers

 GPRs “rotate” to reduce code size for software

pipelined loops

 Rotation is a simple form of register renaming allowing

one instruction to address different physical registers

on each iteration

21

Problem: Mispredicted branches limit ILP

Solution: Eliminate hard to predict branches with predicated

execution

 Almost all IA-64 instructions can be executed conditionally

under predicate

 Instruction becomes NOP if predicate register false

22

Inst 1

Inst 2

br a==b, b2

Inst 3

Inst 4

br b3

Inst 5

Inst 6

Inst 7

Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1

Inst 2

p1,p2 <- cmp(a==b)

(p1) Inst 3 || (p2)

Inst 5

(p1) Inst 4 || (p2)

Inst 6

Inst 7

Inst 8

Predication

One basic block

Mahlke et al, ISCA95: On
average >50% branches removed

23

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Where does predication fit in?

Problem: Branches restrict compiler code motion

24

Inst 1

Inst 2

br a==b, b2

Load r1

Use r1

Inst 3

Can’t move load above

branch because might

cause spurious exception

Load.s r1

Inst 1

Inst 2

br a==b, b2

Chk.s r1

Use r1

Inst 3

Speculative

load never

causes

exception, but

sets “poison” bit

on destination

register
Check for

exception in

original home

block jumps to

fixup code if

exception detected

Particularly useful for scheduling long latency loads early

Solution: Speculative operations that don’t cause exceptions

Problem: Possible memory hazards limit code scheduling

25

Requires associative hardware in address check table

Inst 1

Inst 2

Store

Load r1

Use r1

Inst 3

Can’t move load above

store because store might

be to same address

Load.a r1

Inst 1

Inst 2

Store

Load.c

Use r1

Inst 3

Data speculative

load adds address

to address check

table

Store invalidates

any matching

loads in address

check table

Check if load invalid

(or missing), jump to

fixup code if so

Solution: Hardware to check pointer hazards

Unpredictable branches

Variable memory latency (unpredictable

cache misses)

Code size explosion

Compiler complexity

Despite several attempts, VLIW has failed in

general-purpose computing arena (so far).

 More complex VLIW architectures close to in-order

superscalar in complexity, no real advantage on large

complex apps.

Successful in embedded DSP market

 Simpler VLIWs with more constrained environment,

friendlier code.

26

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

27

