
 

 



 Register renaming removes WAR, WAW hazards 

 In-order fetch/decode, out-of-order execute, in-order 

commit gives high performance and precise exceptions 

 Need to rapidly recover on branch mispredictions 

 Unified physical register file machines remove data values 

from ROB 

 All values only read and written during execution 

 Only register tags held in ROB 
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Reorder buffer used to 

hold exception 

information for commit. 

The instruction window 

holds instructions that 

have been decoded and 

renamed but not issued 

into execution.  Has 

register tags and presence 

bits, and pointer to ROB 

entry. 

 

op p1 PR1 p2 PR2 PRd use ex ROB# 

ROB is usually several times larger than 

instruction window – why?  

Rd LPRd PC Except? 
Ptr

2
  

next to 

commit 

Ptr
1
  

next 

available 

Done? 



… 

ld x1, (x3) 

add x3, x1, x2 

sub x6, x7, x9 

add x3, x3, x6 

ld x6, (x1) 

add x6, x6, x3 

sd x6, (x1) 

ld x6, (x1) 

… 
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(Older instructions) 

(Newer instructions) 

Cycle t 

… 

ld x1, (x3) 

add x3, x1, x2 

sub x6, x7, x9 

add x3, x3, x6 

ld x6, (x1) 

add x6, x6, x3 

sd x6, (x1) 

ld x6, (x1) 

… 

Commit 

Fetch 

Cycle t + 1 

Execute 



i1 Add R1,R1,#1 Issue1 Execute1 

i2 Sub R1,R1,#1 Issue2 Execute2 

How can we issue earlier? 

   Using knowledge of execution latency (bypass) 

What makes this schedule fail? 

   If execution latency wasn’t as expected 

i1 Add R1,R1,#1 Issue1 Execute1 

i2 Sub R1,R1,#1 Issue2 Execute2 



 Fixed latency: latency included in queue entry 

(‘bypassed’) 

 Predicted latency: latency included in queue entry 

(speculated) 

 Variable latency: wait for completion signal (stall) 

Issue Queue (Reorder buffer) 

ptr2 
next to 
commit 

ptr1 
next 

available 

Inst#  use  exec   op    p1 lat1 src1 p2 lat2 src2 dest 

BEQZ 

Speculative Instructions 



Performance of speculative out-of-order 

machines often limited by instruction 

fetch bandwidth 

 speculative execution can fetch 2-3x more 

instructions than are committed 

 mispredict penalties dominated by time to 

refill instruction window 

 taken branches are particularly troublesome 

 



 Fold 2-way tags and BTB into predicted next block 

 Take tag checks, inst. decode, branch predict out of 

loop 

 Raw RAM speed on critical loop (1 cycle at ~1 GHz) 

 2-bit hysteresis counter per block prevents 

overtraining 

Cached 

Instructions 

Line 

Predict 

Way 

Predict 

Tag 

Way 

0 

Tag 

Way 

1 

=? =? 

fast fetch path 

PC 

Generation 

PC 

Branch Prediction 

Instruction Decode 

Validity Checks 

4 insts 

Hit/Miss/Way 



 Choice predictor learns whether best to use local or global 

branch history in predicting next branch 

 Global history is speculatively updated but restored on 

mispredict 

 Claim 90-100% success on range of applications 

Local 

history 

table 

(1,024x10

b) 

PC 

Local 

predictio

n 

(1,024x3b

) 

Global 

Prediction 

(4,096x2b) 

Choice 

Prediction 

(4,096x2b) 

Global History (12b) 
Prediction 



 Integer codes have a taken branch every 6-9 instructions 

 To avoid fetch bottleneck, must execute multiple taken 

branches per cycle when increasing performance 

 This implies: 

 predicting multiple branches per cycle 

 fetching multiple non-contiguous blocks per cycle 



PC 

k 

Entry PC 

= 

match 

Valid 

valid 

predicted 

target#1 

target #1 
len 

len#1 

predicted 

target#2 

target #2 

Extend BTB to return multiple branch predictions per cycle 



Requires either 

 multiported cache: expensive 

 interleaving: bank conflicts will occur 

 

Merging multiple blocks to feed to decoders adds latency 

increasing mispredict penalty and reducing branch 

throughput 

 



Key Idea: Pack multiple non-contiguous basic blocks into 

one contiguous trace cache line 

BR BR BR 

• Single fetch brings in multiple basic blocks 

• Trace cache indexed by start address and next n branch predictions 

• Used in Intel Pentium-4 processor to hold decoded uops 

BR BR BR 



  During decode, instructions allocated new physical destination register 

  Source operands renamed to physical register with newest value 

  Execution unit only sees physical register numbers 
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Rename Table 

Op Src1 Src2 Dest Op Src1 Src2 Dest 

Register 
Free List 

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest 

Update 
Mapping 

Does this work? 

Inst 1 Inst 2 

Read Addresses 

Read Data 

W
ri

te
 

Po
rt

s 
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Rename Table 

Op Src1 Src2 Dest Op Src1 Src2 Dest 

Register 
Free List 

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest 

Update 
Mapping 

Inst 1 Inst 2 

Read Addresses 

Read Data 

W
ri

te
 

Po
rt

s =? =? 

Must check for 
RAW hazards 
between 
instructions issuing 
in same cycle.  Can 
be done in parallel 
with rename 
lookup. 

MIPS R10K renames 4 serially-RAW-dependent insts/cycle 
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Just like register updates, stores should not modify 
the memory until after the instruction is committed 
 
- A speculative store buffer is a structure introduced to hold 
speculative store data. 



Just like register updates, stores 

should not modify the memory 

until after the instruction is 

committed. A speculative store 

buffer is a structure introduced to 

hold speculative store data. 

 During decode, store buffer slot 

allocated in program order 

 Stores split into “store address” 

and “store data” micro-

operations 

 “Store address” execute writes 

tag 

 “Store data” execute writes data 

 Store commits when oldest 

instruction and both address and 

data available:  

 clear speculative bit and eventually 

move data to cache 

 On store abort: 

  clear valid bit 
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Data Tags 

Store Commit 
Path 

Speculative 
Store Buffer 

L1 Data Cache 

Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 

Store 
Address 

Store 
Data 
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 If data in both store buffer and cache, which should we use? 

 Speculative store buffer 

 If same address in store buffer twice, which should we use? 

 Youngest store older than load 

Data 

Load Address 

Tags 

Speculative 
Store Buffer 

L1 Data Cache 

Load Data 

Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 



sd x1, (x2) 

ld x3, (x4) 

 

When can we execute the load? 
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 Execute all loads and stores in program order 

 

=> Load and store cannot leave ROB for execution until all 

previous loads and stores have completed execution 

 

 Can still execute loads and stores speculatively, and out-

of-order with respect to other instructions 

 

 Need a structure to handle memory ordering… 
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sd x1, (x2) 

ld x3, (x4)  
 

 Can execute load before store, if addresses known and x4 != x2 
 

 Each load address compared with addresses of all previous 
uncommitted stores 
 can use partial conservative check i.e., bottom 12 bits of address, to 

save hardware 
 

 Don’t execute load if any previous store address not known 

 

(MIPS R10K, 16-entry address queue) 
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 Guess that x4 != x2 

 

 Execute load before store address known 

 

 Need to hold all completed but uncommitted 

load/store addresses in program order 

 

 If subsequently find x4==x2, squash load and all 

following instructions 

 

   => Large penalty for inaccurate address speculation 
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sd x1, (x2) 

ld x3, (x4) 



sd x1, (x2) 

ld x3, (x4)  

 

 Guess that x4 != x2 and execute load before store 
 

 If later find x4==x2, squash load and all following 
instructions, but mark load instruction as store-wait 
 

 Subsequent executions of the same load instruction will wait 
for all previous stores to complete 
 

 Periodically clear store-wait bits 
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Fetch 
Decode & 

Rename 
Reorder Buffer PC 

Branch 

Prediction 

Commit 

Datapath: Branch Prediction 
and Speculative Execution 

Branch 

Resolution 

Branch 

Unit 
ALU 

Reg. File 

MEM 
Store 

Buffer 
D$ 

Execute 

kill 

kill 

kill 
kill 

../2004/F04/Handouts/L15-BranchPrediction.james.ppt#7. Slide 7


Fetch 

 Get instruction bits from current guess at PC, place in fetch 

buffer 

 Update PC using sequential address or branch predictor 

(BTB) 

Decode/Rename 

 Take instruction from fetch buffer 

 Allocate resources to execute instruction: 

 Destination physical register, if instruction writes a 

register 

 Entry in reorder buffer to provide in-order commit 

 Entry in issue window to wait for execution 

 Entry in memory buffer, if load or store 

 Decode will stall if resources not available 

 Rename source and destination registers 

 Check source registers for readiness 

 Insert instruction into issue window+reorder 

buffer+memory buffer 
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 Split store instruction into two pieces during decode: 

 Address calculation, store-address 

 Data movement, store-data 

 Allocate space in program order in memory buffers during 

decode 

 Store instructions:  

 Store-address calculates address and places in store buffer 

 Store-data copies store value into store buffer 

 Store-address and store-data execute independently out of issue 

window 

 Stores only commit to data cache at commit point 

 Load instructions: 

 Load address calculation executes from window 

 Load with completed effective address searches memory buffer 

 Load instruction may have to wait in memory buffer for earlier 

store ops to resolve 
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 Writebacks from completion phase “wakeup” some instructions by causing 

their source operands to become ready in issue window 

 In more speculative machines, might wake up waiting loads in memory buffer 

 

 Need to “select” some instructions for issue 

 Arbiter picks a subset of ready instructions for execution 

 Example policies: random, lower-first, oldest-first, critical-first 

 

 Instructions read out from issue window and sent to execution 
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 Read operands from physical register file and/or bypass network from 

other functional units 

 Execute on functional unit 

 Write result value to physical register file (or store buffer if store) 

 Produce exception status, write to reorder buffer 

 Free slot in instruction window 

 

28 



Read completed instructions in-order 

from reorder buffer 

 (may need to wait for next oldest instruction to 

complete) 

 If exception raised 

 flush pipeline, jump to exception handler 

Otherwise, release resources: 

 Free physical register used by last writer to same 

architectural register 

 Free reorder buffer slot 

 Free memory reorder buffer slot 
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 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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