ARCHITECTURE OF
COMPUTER SYSTEMS
LECTURE 12 -
ADVANCED OUT-OF-@)
ORDER SUPERSCALARS

LAST TIME IN
LECTURE 11

r renammg removeés WAR, WAW hazards

= In-order fetch/decode, out-of-order execute, in-order
commit gives high performance and precise exceptions

= Need to rapidly recover on branch mispredictions
= Unified physical register file machines remove data values

from ROB
= All values only read and written during execution

= Only register tags held in ROB

Ad A 4 A NSL A A g A Rl VWE AL N

INSTRUCTION
NN W ROM ROB

holds instructions that

have been decoded and [[b1 PR1102 PR2 | PR ROB
renamed but not issued
into execution. Has
register tags and presence
bits, and pointer to ROBtr,
' Dong”Rd | LPRd | PC Except:

Reorder buffer used ™™t

hold exception

information for commit.

Ptr,

next

ROB is usually severdPtaties larger than
instruction window - why?

0

REORDER BUFFER HOLDS
ACTIVE INSTRUCTIONS

(DECQREDBAENIT COMMITTED)..

1 Commit

1d x1, (x3) ks 1d x1, (x3)

add XBI X1I x2) add x3, x1, x2

sub x6, x7, x9 sub x6, x7, x9
Execute ! !

add x3, x3, x6 > » | add x3, x3, x6

1d x6, (x1) 1d x6, (x1)

add x6, x6, x3 J add x6, x6, x3

sd x6, (xI)] Fotch sd x6, (x1)

1ld x6, (x1) 1d x6, (x1)

- (Newer instructions)

Cycle ¢ Cycle ¢t + 1

i1 |Add R1,R1,#1 |Issue, |Execute,

i2 |Sub R1,R1,#1 Issue, Execute,

How can we issue earlier?
Using knowledge of execution latency (bypass)

il |Add R1,R1,#1 |Issue, Execute,

i2 |Sub R1,R1,#1 Issue, Execute,

What makes this schedule fail?
If execution latency wasn’t as expected

L

ISSUE QUEUE WITH
LATENCY PREDICTION

Inst# use exec op pl latl srcl p2 lat2 src2 dest

ptr,

next to
- - -
commit - -

[] []
W%//Z/{W/-///’//-/WW
e fﬁ‘fﬁ”ﬁMEff?///-////f’/,//’/

D7 77,7%777%//77 % it 7% %%

ptr;
next
available

Issue Queue (Reorder buffer)

= Fixed latency: latency included in queue entry
(‘bypassed’)

= Predicted latency: latency included in queue entry
(speculated)

= Variable latency: wait for completion signal (stall)

IMPROVING
INSTRUCTION FETCH

Performance of speculative out-of-order
machines often limited by instruction
fetch bandwidth

= speculative execution can fetch 2-3x more
instructions than are committed

= mispredict penalties dominated by time to
refill instruction window

are particularly troublesome

INCREASING TAKEN BRANCH

BANDWIDTH

(ALPHA 21264 I-CACHE)

Branch Prediction
PC Instruction Decode
"| Generation Validity Checks
> Line Way Cached ;/rvilg ;/rvilg
- D Predict |Predict | Instructions Y Y
PC 0 1
4 insts/l/
l \ 4 v
= Fold 2-way tags and BTB into predicted next block Q :
= Take tag checks, inst. decode, branch predict out of | Hit/Miss/Way

loop

= Raw RAM speed on critical loop (1 cycle at ~1 GHz)

NS 7NV TV TYYT W

L

FTUURINAIVIEIN
BRANCH PREDICTOR

(ALPHA 21264)

Global

Prediction
(4,096x2Db)

Local Local
history predictio
table | n
(1,024x10 (1,024x3b
b))

PC

<

y 2

Choice
Prediction
(4,096x2Db)

Prediction

| Global History (12b)

= Choice Eredictor learns whether best to use local or global

branch

istory in predicting next branch

= Global history is speculatively updated but restored on

mispredict

= Claim 90-100% success on range of applications

L

1TAKEN bRANCH
LIMIT

= Integer codes have a taken branch every 6-9 instructions

= To avoid fetch bottleneck, must execute multiple taken
branches per cycle when increasing performance

= This implies:
= predicting multiple branches per cycle
= fetching multiple non-contiguous blocks per cycle

DRANUIN ADUIREDS
CACHE

(YEH, MARR, PATT)

Entry PC Valid predicted len predicted
target #1 target #2
— ° ° ° ° °
° ° ° ° ® [I
°] ° L4 °
°] ° L4 °
1 k
PC
J —

match valid target#l len#l target#2

Extend BTB to return multiple branch predictions per cycle

€

FETCHING MULTIPLE
BASIC BLOCKS

Requires either
= multiported cache: expensive

= interleaving: bank conflicts will occur

Merging multiple blocks to feed to decoders adds latency
increasing mispredict penalty and reducing branch
throughput

TRACE CACHE

Key Idea: Pack multiple non-contiguous basic blocks into
one contiguous trace cache line

BR Eii\\fﬂ//} BR
N/

BR BR BR

e Single fetch brings in multiple basic blocks
e Trace cache indexed by start address and next n branch predictions

e Used in Intel Pentium-4 processor to hold decoded uops

SUPERSCALAR-REGISTER
R E NAM’m | register numbers

Inst 1 |Op | Dest]|Srcl|Src2 Op | Dest|Srcl|Src2]|/nst 2

Update { ‘ %eﬁqamﬁcﬁﬁimses Register
Mapping (N Free List
J

Op PDest| PSrc1| PSrc2| | Op PDest| PSrc1| PSrc2

Does this work?

=)

SUPERSE
RENAMING

Update
Mapping

Must check for
RAW hazards
between

Al

Srcl | Src2

|

Srg R)Sl“ 2

instructions issuing
in same cycle. Can
be done in parallel

with rename
lookup.

Dest Op | Dest| Srcl
Read Addresses \ Y y ¥ .

D & - = | Register
:gemame Table & & - 5]
2 Read Data prree Ist

|
—__/ L/
Op PDest| PSrcl] PSrc2| | Op PDest| PSrc1| PSrc2

MIPS R10K renames 4 serially-RAW-dependent insts/cycle

SPECULATIVE LOADS
/ STORES

Just like register updates, stores should not modify
the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold
speculative store data.

SpeC“/at’Ve commltted A speculatlve store
Store Buffer buffer is a structure introduced to
VS Tag Data hold speculative store data.

x 2 Eg BZE « During decode, store buffer slot
VS Tas Data allocated in program order
V S Tag Data = Stores split into “store address”
V S Tag Data and “store data” micro-
operations
Store Commit = “Store address” execute writes
Path tag

= “Store data” execute writes data

= Store commits when oldest
Tags | Data instruction and both address and
data available:

= clear speculative bit and eventually
move data to cache

L1 Data Cache
= On store abort:

= clear valid bit

s

- Load ddres R O M
SPECULATIVE

1 ORE"BUFFER

V S Tag Data
V S Tag Data
\ S| Tag Data Tags Data
V S Tag Data
V S Tag Data
V S Tag Data

Load Data

= [f data in both store buffer and cache, which should we use?
Speculative store buffer

= [f same address in store buffer twice, which should we use?
Youngest store older than load

e

MEMORY
DEPENDENCIES

sd x1, (x2)
1d x3, (x4)

When can we execute the load?

IN-ORDER MEMORY
QUEUL

= Execute all loads and stores in program order

=> Load and store cannot leave ROB for execution until all
previous loads and stores have completed execution

= Can still execute loads and stores speculatively, and out-
of-order with respect to other instructions

= Need a structure to handle memory ordering...

CONSERVATIVE O-0-0
LOAD EXECUTION

sd x1, (x2)
1d x3, (x4)

= Can execute load before store, if addresses known and x4 != x2

= Each load address compared with addresses of all previous
uncommitted stores

= can use partial conservative check 1.e., bottom 12 bits of address, to
save hardware

= Don’t execute load if any previous store address not known

(MIPS R10K, 16-entry address queue)

=)

ADDRESS SPECULATION

sd x1, (x2)
1d x3, (x4)

= Guess that x4 = x2
= Execute load before store address known

= Need to hold all completed but uncommitted
load/store addresses in program order

= If subsequently find x4==x2, squash load and all
following instructions

=> Large penalty for inaccurate address speculation

o

MEMORY DEPENDENCE
PREDICTION

(ALPHA 21264) sd x1, (x2)
1d x3, (x4)

= (Guess that x4 = x2 and execute load before store

= If later find x4==x2, squash load and all following
instructions, but mark load instruction as store-wait

= Subsequent executions of the same load instruction will wait
for all previous stores to complete

= Periodically clear store-wait bits

o

Datapath: Branch Prediction

and Speculative Execution

Decode &
Rename

il kill

Reox)éer Buffé\

Commit

../2004/F04/Handouts/L15-BranchPrediction.james.ppt#7. Slide 7

INSTRUCTION FLOW IN
UNIEELED PHYSICAL
REGISTER FITLE"PIPELINE"™

: }dee;te PC using sequential address or branch predictor
BTB

=Decode/Rename
= Take instruction from fetch buffer
= Allocate resources to execute instruction:

= Destination physical register, if instruction writes a
register

= Entry in reorder buffer to provide in-order commit
= Entry in issue window to wait for execution
= Entry in memory buffer, if load or store

= Decode will stall if resources not available

= Rename source and destination registers

= Check source registers for readiness

= Insert instruction into issue window+reorder

hiiffarLrmamnry: hiiffar

o

Wi
a

= Data movement, store-data

= Allocate space in program order in memory buffers during
decode

= Store instructions:
= Store-address calculates address and places in store buffer
= Store-data copies store value into store buffer

= Store-address and store-data execute independently out of issue
window

= Stores only commit to data cache at commit point

= Load instructions:
= Load address calculation executes from window
= Load with completed effective address searches memory buffer

= Load instruction may have to wait in memory buffer for earlier
store ops to resolve

ISSUE STAGE

= Writebacks from completion phase “wakeup” some instructions by causing
their source operands to become ready in issue window

= In more speculative machines, might wake up waiting loads in memory buffer

= Need to “select” some instructions for issue
= Arbiter picks a subset of ready instructions for execution
= Example policies: random, lower-first, oldest-first, critical-first

= Instructions read out from issue window and sent to execution

)

EXECUTE STAGE

= Read operands from physical register file and/or bypass network from
other functional units

= Execute on functional unit
= Write result value to physical register file (or store buffer if store)
= Produce exception status, write to reorder buffer

= Free slot in instruction window

o

LImISEIA'GECUOnS in-order

rm reorder buffer

= (may need to wait for next oldest instruction to
complete)

« If exception raised
= flush pipeline, jump to exception handler

=Otherwise, release resources:

= Free physical register used by last writer to same
architectural register

= Free reorder buffer slot
= Free memory reorder buffer slot

o

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

