

 Register renaming removes WAR, WAW hazards

 In-order fetch/decode, out-of-order execute, in-order

commit gives high performance and precise exceptions

 Need to rapidly recover on branch mispredictions

 Unified physical register file machines remove data values

from ROB

 All values only read and written during execution

 Only register tags held in ROB

2

3

Reorder buffer used to

hold exception

information for commit.

The instruction window

holds instructions that

have been decoded and

renamed but not issued

into execution. Has

register tags and presence

bits, and pointer to ROB

entry.

op p1 PR1 p2 PR2 PRd use ex ROB#

ROB is usually several times larger than

instruction window – why?

Rd LPRd PC Except?
Ptr

2

next to

commit

Ptr
1

next

available

Done?

…

ld x1, (x3)

add x3, x1, x2

sub x6, x7, x9

add x3, x3, x6

ld x6, (x1)

add x6, x6, x3

sd x6, (x1)

ld x6, (x1)

…

4

(Older instructions)

(Newer instructions)

Cycle t

…

ld x1, (x3)

add x3, x1, x2

sub x6, x7, x9

add x3, x3, x6

ld x6, (x1)

add x6, x6, x3

sd x6, (x1)

ld x6, (x1)

…

Commit

Fetch

Cycle t + 1

Execute

i1 Add R1,R1,#1 Issue1 Execute1

i2 Sub R1,R1,#1 Issue2 Execute2

How can we issue earlier?

 Using knowledge of execution latency (bypass)

What makes this schedule fail?

 If execution latency wasn’t as expected

i1 Add R1,R1,#1 Issue1 Execute1

i2 Sub R1,R1,#1 Issue2 Execute2

 Fixed latency: latency included in queue entry

(‘bypassed’)

 Predicted latency: latency included in queue entry

(speculated)

 Variable latency: wait for completion signal (stall)

Issue Queue (Reorder buffer)

ptr2
next to
commit

ptr1
next

available

Inst# use exec op p1 lat1 src1 p2 lat2 src2 dest

BEQZ

Speculative Instructions

Performance of speculative out-of-order

machines often limited by instruction

fetch bandwidth

 speculative execution can fetch 2-3x more

instructions than are committed

 mispredict penalties dominated by time to

refill instruction window

 taken branches are particularly troublesome

 Fold 2-way tags and BTB into predicted next block

 Take tag checks, inst. decode, branch predict out of

loop

 Raw RAM speed on critical loop (1 cycle at ~1 GHz)

 2-bit hysteresis counter per block prevents

overtraining

Cached

Instructions

Line

Predict

Way

Predict

Tag

Way

0

Tag

Way

1

=? =?

fast fetch path

PC

Generation

PC

Branch Prediction

Instruction Decode

Validity Checks

4 insts

Hit/Miss/Way

 Choice predictor learns whether best to use local or global

branch history in predicting next branch

 Global history is speculatively updated but restored on

mispredict

 Claim 90-100% success on range of applications

Local

history

table

(1,024x10

b)

PC

Local

predictio

n

(1,024x3b

)

Global

Prediction

(4,096x2b)

Choice

Prediction

(4,096x2b)

Global History (12b)
Prediction

 Integer codes have a taken branch every 6-9 instructions

 To avoid fetch bottleneck, must execute multiple taken

branches per cycle when increasing performance

 This implies:

 predicting multiple branches per cycle

 fetching multiple non-contiguous blocks per cycle

PC

k

Entry PC

=

match

Valid

valid

predicted

target#1

target #1
len

len#1

predicted

target#2

target #2

Extend BTB to return multiple branch predictions per cycle

Requires either

 multiported cache: expensive

 interleaving: bank conflicts will occur

Merging multiple blocks to feed to decoders adds latency

increasing mispredict penalty and reducing branch

throughput

Key Idea: Pack multiple non-contiguous basic blocks into

one contiguous trace cache line

BR BR BR

• Single fetch brings in multiple basic blocks

• Trace cache indexed by start address and next n branch predictions

• Used in Intel Pentium-4 processor to hold decoded uops

BR BR BR

 During decode, instructions allocated new physical destination register

 Source operands renamed to physical register with newest value

 Execution unit only sees physical register numbers

14

Rename Table

Op Src1 Src2 Dest Op Src1 Src2 Dest

Register
Free List

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest

Update
Mapping

Does this work?

Inst 1 Inst 2

Read Addresses

Read Data

W
ri

te

Po
rt

s

15

Rename Table

Op Src1 Src2 Dest Op Src1 Src2 Dest

Register
Free List

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read Data

W
ri

te

Po
rt

s =? =?

Must check for
RAW hazards
between
instructions issuing
in same cycle. Can
be done in parallel
with rename
lookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle

16

Just like register updates, stores should not modify
the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold
speculative store data.

Just like register updates, stores

should not modify the memory

until after the instruction is

committed. A speculative store

buffer is a structure introduced to

hold speculative store data.

 During decode, store buffer slot

allocated in program order

 Stores split into “store address”

and “store data” micro-

operations

 “Store address” execute writes

tag

 “Store data” execute writes data

 Store commits when oldest

instruction and both address and

data available:

 clear speculative bit and eventually

move data to cache

 On store abort:

 clear valid bit

17

Data Tags

Store Commit
Path

Speculative
Store Buffer

L1 Data Cache

Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V

Store
Address

Store
Data

18

 If data in both store buffer and cache, which should we use?

 Speculative store buffer

 If same address in store buffer twice, which should we use?

 Youngest store older than load

Data

Load Address

Tags

Speculative
Store Buffer

L1 Data Cache

Load Data

Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V

sd x1, (x2)

ld x3, (x4)

When can we execute the load?

19

 Execute all loads and stores in program order

=> Load and store cannot leave ROB for execution until all

previous loads and stores have completed execution

 Can still execute loads and stores speculatively, and out-

of-order with respect to other instructions

 Need a structure to handle memory ordering…

20

sd x1, (x2)

ld x3, (x4)

 Can execute load before store, if addresses known and x4 != x2

 Each load address compared with addresses of all previous
uncommitted stores
 can use partial conservative check i.e., bottom 12 bits of address, to

save hardware

 Don’t execute load if any previous store address not known

(MIPS R10K, 16-entry address queue)

21

 Guess that x4 != x2

 Execute load before store address known

 Need to hold all completed but uncommitted

load/store addresses in program order

 If subsequently find x4==x2, squash load and all

following instructions

 => Large penalty for inaccurate address speculation

22

sd x1, (x2)

ld x3, (x4)

sd x1, (x2)

ld x3, (x4)

 Guess that x4 != x2 and execute load before store

 If later find x4==x2, squash load and all following
instructions, but mark load instruction as store-wait

 Subsequent executions of the same load instruction will wait
for all previous stores to complete

 Periodically clear store-wait bits

23

24

Fetch
Decode &

Rename
Reorder Buffer PC

Branch

Prediction

Commit

Datapath: Branch Prediction
and Speculative Execution

Branch

Resolution

Branch

Unit
ALU

Reg. File

MEM
Store

Buffer
D$

Execute

kill

kill

kill
kill

../2004/F04/Handouts/L15-BranchPrediction.james.ppt#7. Slide 7

Fetch

 Get instruction bits from current guess at PC, place in fetch

buffer

 Update PC using sequential address or branch predictor

(BTB)

Decode/Rename

 Take instruction from fetch buffer

 Allocate resources to execute instruction:

 Destination physical register, if instruction writes a

register

 Entry in reorder buffer to provide in-order commit

 Entry in issue window to wait for execution

 Entry in memory buffer, if load or store

 Decode will stall if resources not available

 Rename source and destination registers

 Check source registers for readiness

 Insert instruction into issue window+reorder

buffer+memory buffer

25

 Split store instruction into two pieces during decode:

 Address calculation, store-address

 Data movement, store-data

 Allocate space in program order in memory buffers during

decode

 Store instructions:

 Store-address calculates address and places in store buffer

 Store-data copies store value into store buffer

 Store-address and store-data execute independently out of issue

window

 Stores only commit to data cache at commit point

 Load instructions:

 Load address calculation executes from window

 Load with completed effective address searches memory buffer

 Load instruction may have to wait in memory buffer for earlier

store ops to resolve

26

 Writebacks from completion phase “wakeup” some instructions by causing

their source operands to become ready in issue window

 In more speculative machines, might wake up waiting loads in memory buffer

 Need to “select” some instructions for issue

 Arbiter picks a subset of ready instructions for execution

 Example policies: random, lower-first, oldest-first, critical-first

 Instructions read out from issue window and sent to execution

27

 Read operands from physical register file and/or bypass network from

other functional units

 Execute on functional unit

 Write result value to physical register file (or store buffer if store)

 Produce exception status, write to reorder buffer

 Free slot in instruction window

28

Read completed instructions in-order

from reorder buffer

 (may need to wait for next oldest instruction to

complete)

 If exception raised

 flush pipeline, jump to exception handler

Otherwise, release resources:

 Free physical register used by last writer to same

architectural register

 Free reorder buffer slot

 Free memory reorder buffer slot

29

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

30

