ARCHITECTURE OF
COMPUTER SYSTEMS
SICPOREG Mt
OF-ORDER ISSUE,
REGISTER RENAMING@)
& BRANCH
PREDICTION

LAST TIME IN
L.E}fﬁ;l ig AW atld% multiple and/or variable

latency functional units

= Qut-of-order and/or pipelined execution requires
tracking of dependencies

= RAW
= WAR
= WAW

= Dynamic issue logic can support out-of-order execution
to improve performance

= Last time, looked at simple scoreboard to track out-of-order
completion

= Hardware register renaming can further improve
performance by removing hazards.

REGISTER RENAMING

ALU Mem \ J
IF |—| 1D >l we
Fadd 7
Fmul

= Decode does register renaming and adds instructions to the
issue-stage instruction reorder buffer (ROB)

= renaming makes WAR or WAW hazards impossible

= Any instruction in ROB whose RAW hazards have been
satisfied can be issued.

= Qut-of-order or dataflow execution

NN A.M.I.N U

regfile

Ins#|usqd exec op |[pl srkl| p2 shck,

Reorder t,
buffer -

|
Replacing the 1 T 1 1] | l

!:ag by its va!ue Load FU FU Store
IS an expensive Unit Unit

operation l

< t, result >

e Instruction template (i.e., tag t) is allocated by the
Decode stage, which also associates tag with register in redfile
e When an instruction completes, its tag is deallocated

KEUKUEK DUI'ILIN

next to

—p
deallocate o
* Destination

* registers are
renamed to the

ptry instruction’s
next slot tag
. —f
available
t,

ROB managed circularly
o"exec” bit is set when instruction begins execution
e\When an instruction completes its “use” bit is marked free
e ptr, is incremented only if the “use” bit is marked free

Instruction slot is candidate for execution when:
e It holds a valid instruction (“use” bit is set)
e It has not already started execution (“exec” bit is clear)
e Both operands are available (p1 and p2 are set)

[BM 36(

1lp a/data

91 FLOATIN Gruingron

POINTE ey B - e
b ftag/data fe 2 tag/data [¢
o tag/data | (from 3 tag/gata
R. M. TOMASUL {tg%gg:g memory) 4 o ttag/data
6
Distribute I I
instruction tag/data |p ftag/data
tag/data |p tag/data 1 tag/data igtag/data
templates tag/data |p ftag/data 2 tag/data |p ftag/data
by
functional \ Adder / \ Mult /
units
H <tag,_m_wjx> |
}tag‘)data Common bus ensures that data is made available
store buffers E}tag/data immediately to all the instructions waiting for it.
(to memory) |p ftag/data “ »

Match tag, if equal, copy value & set presence “p”.

0

EFFECTIVENESS?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not show
up in the subsequent models until mid-Nineties.
Why ?

Reasons

1. Effective on a very small class of programs

2. Memory latency a much bigger problem

3. Exceptions not precise!

One more problem needed to be solved
Control transfers

PRECISE
INTERRUPTS

It must appear as if an interrupt is taken between
two instructions (say I, and I..,)

e the effect of all instructions up to and including [, is
totally complete
e no effect of any instruction after I, has taken place

The interrupt handler either aborts the program or
restartsitat I, .

EFFECT ON
INTERRUPTS

OUT-OF-ORDER COMPLETION
I, DIVD f6, f6, f4
I, LD f2, 45(r3)
I, MULTD fo, f2, f4
I, DIVD f8, f6, f2
I. SUBD f10, fO, f6
I, ADDD f6, 8, f2

out-of-ordercomp 1 2 2 3 1 4 3 5 5 4 6

restore 2 restore f10
Consider interrupts

Precise interrupts are difficult to implement at high speed
- want to start execution of later instructions before
exception checks finished on earlier instructions

6

EXCEPTION HANDLING |

'ﬁ Data :
E| p M W

Mem

(IN-ORDER FIVE-STAGE PIPELINE) Point
X Inst.
p(_<|> Memn H P Decode /?
tifegat
Select Opcod verflow

Handfer |PC Address
PC Exceptions

‘IC

‘IC

Kill F

Stage

l Kill D
Stage

> > E EPC
Kill E Asynchronous .
Stage Interrupts .

e Hold exception flags in pipeline until commit point (M stage)

e Exceptions in earlier pipe stages override later exceptions

e Inject external interrupts at commit point (override others)

o If exception at commit: update Cause and EPC registers, Kkill
all stages, inject handler PC into fetch stage

INSTRUCTION

Fetch Buffer

Decode/Renamgé

Issue Buffer

Functional Unitg

Result Buffe

Architectural
State

IN-ORDER COMMIT FOR PRECISE EXCEPTIONS

In-order Out-of-order In-order
Fetch " Decode —| Reorder Buffer |——| CoOmmit
Kill = |

| Execute |

Inject handler PC

e Instructions fetched and decoded into instruction
reorder buffer in-order

e Execution is out-of-order (= out-of-order completion)

e Commit (write-back to architectural state, i.e., redfile &
memory, is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

)

EXTENSIONS FOR
PRECISE EXCEPTIONS ,, ..

otr DI I,
next to 7
commit T

ptri D777
next D777 77
available vy

Reorder buffer

e add <pd, dest, data, cause> fields in the instruction template
e commit instructions to reg file and memory in program
order = buffers can be maintained circularly
e on exception, clear reorder buffer by resetting ptrq=ptr,
(stores must wait for commit before updating memory)

data cause

©

ALI& AND

(now holds only
committed state) 1 1
Ins#] usé exéc_of IpL_ srdi][p? sic2l pd]dest data
Reorder 2
buffer '
tn
r)
Load Store | Commit
Unit FU FU FU Unit I

1

l

1

< t, result >

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?
Search the “"dest” field in the reorder buffer

=)

RENAMING TABLE

Rename rl tag] RegISt'eI‘
| | |
Ins#|use ex¢c op Ipl srdl [p2 src2l pd|dest |d&atd
Reorder t;
buffer '
t,
7) |
Load Store | Commit
Unit FU FU FU Unit

1

l

< t, result >

Renaming table is a cache to speed up register name look up.
It needs to be cleared after each exception taken.
Control transfers

When else are valid bits cleared?

G

CUNIRUL I'LUYY
PENALTY

Next fetch
started
I-cache
Modern processors may have -
> 10 pipeline stages between Fetch
next PC calculation and branch

resolution !

How much work is lost if Buffer
pipeline doesn’t follow
correct instruction flow? Func.
Units
~ Loop length x pipeline

width Result
Branch Buffer

executed

CS152 ADMINISTRIVIA

= Quiz 2, Tuesday March 5
= Caches and Virtual memory L6 - L9, PS 2, Lab 2, readings

MISPREDICT
RECOVERY

In-order execution machines:

= Assume no instruction issued after branch can write-back
before branch resolves

= Kill all instructions in pipeline behind mispredicted branch

Out-of-order execution?

—Multiple instructions following branch in program
order can complete before branch resolves

e

IN-ORDER COMMIT FOR PRECISE EXCEPTIONS

In-order Out-of-order In-order
Fetch * Decode —| Reorder Buffer »| Commit
Kil
Kill
Inject handler PC

e Instructions fetched and decoded into instruction
reorder buffer in-order

e Execution is out-of-order (= out-of-order completion)

e Commit (write-back to architectural state, i.e., redfile &
memory, is in-order

Temporary storage needed in ROB to hold results before commit

BRANCH MISPREDICTION
IN PIPELINE

PJ—*| Fetch

nject correct PC

Kill

Decode

Kill Kill \

—

Reorder Buffer

—

Commit

l ‘ Complete

Execute

e Can have multiple unresolved branches in ROB

e Can resolve branches out-of-order by killing all the

instructions in ROB that follow a mispredicted branch

RECUVERIING
ROB/RENAMING TABLE

Rename Rename Registe P
Table i Snapshots r File
I
Ptr, , 1 1
next to s#|use¢ exeéc op |pl srd¢l | p2 snc2l pd|dest |d&atq
commit t;
rollback :
next _
Pailab t,
next —
av&iater | | l
buffer | sad FU FU U Store Commit
Unit Unit

l l

1

< t, result >

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

@

"DATA-IN-ROB” DESIGN

(HP PASOOO, PENTEUM—P’R—Q,—G@BEZDUO, NEHALEM)
Register File
holds only
committed state 1 1
Ins#] usé exéc_of Ipl_ srdl]p2 sAc2l pd]dest data
Reorder 2
buffer '
t,
|
I S W NN W N O S
Load Store | Commit
Unit FU FU FU Unit I
l l 1 < t, result >

e On dispatch into ROB, ready sources can be in redfile or in ROB

dest (copied into srcl/src?2 if ready before dispatch)

e On completion, write to dest field and broadcast to src fields.

e On issue, read from ROB src fields @

DATA MOVEMENT IN
DATA-IN-ROB DESIGN

Architectural Register Read
Read File results
operands at |
during decode commit
Write sources Bypass newer

after decode

Src Operands Result

ROB Data
A
Read ? T Write results
op_erands v v at |
at issue completion

Functional Units

UANLL AEL4/ A L L & JALN_ L AL

REGISTER FILE

Gl Akt ettt eIk terS T8 4 Sivdh bhysical

file during decode, no register values read

= Functional units read and write from single unified register
file holding committed and temporary registers in execute

= Commit only updates mapping of architectural register to
physical register, no data movement

Decode Stage Committed

Regis_ter | Unified Physical | Register
Mapping Register File Mapping

Read operands at Write results at
issue completion

Functional Units

o

Pipeline Design with Physical Redfile

-Order In-q[der

v | \ N[\

Reo/[der Buffe\ | Commit
. o\
Physical Reg. File

Decode &
Rename

- 4
~—

In-Order

Branc Store

../2004/F04/Handouts/L15-BranchPrediction.james.ppt#7. Slide 7

LIFETIME OF PRHYSICAL
R ys%llré;[eﬂggcsémmitted and speculative values

e Physical registers decoupled from ROB entries (no data in ROB)

Id x1, (X3)

addi x3, x1, #4
sub x6, x7, x9

add x3, x3, x6 Rename>
Ild x6, (x1)

add x6, x6, x3

sd x6, (x1)
Id x6, (x11)

When can we reuse a physical register?

Id P1, (Px)

addi P2, P1, #4
sub P3, Py, Pz

add P4, P2, P3

ld P5, (P1)

add P6, P5, P4

sd P6, (P1)

ld P7, (Pw)

When next write of same architectural register commits

PHYICAL REGISTER
NAGEMENT ,_,,

Table PO

x0 P1

x1 P8 P2 P3 Id x1, 0(x3)

X2 P3 P2 i

iy b2 oo addi x3, x1, #4

x4 P5| <x6> sub x6, x7, x6

X5 P6 [<x7>

X6 [P5 P7 [<x3> add x3, x3, x6

X7 | P6 P8 | <x1> Id x6 O(Xl)

/
Pn'
ROB

‘useex/op |plPR1 |p2PR2 |Rd |LPRd |PRd (LPRd requires
third read port
on Rename
Table for each
instruction)

@

PHYSICAL REGISTER
MANAGEMENT ...

Table
kao /)Eé_ P3 =P |d X1 O(X3)
X2 — i Eﬁ addi x3, x1, #4
x451 N 5655 <xe7'>> u sub x6, x7, x6
X < >
x6 | P5 \R(<§3> add x3, x3, x6
x7 (g Plexl> b1 | |d x6, O(x1)

Pni \ : : : :

ROB N

useexlop |pl{PR1 [p2 PR2 |Rd “lLPRd |[PRd
X d |p| P7 x1]°P8 PO

PHYSICAL REGISTER
MANAGEMENT ...

Table
ig Epo P2 — p3 Id x1, 0(x3)
P2 i
X2 o s—— b3 P2 = addi x3, x1, #4

sub x6, x7, x6
add x3, x3, x6

x4 N\ P5| <x6>
x5 N\ P6 | <x7> E

X6 | P5 B P7 [<x3>
X7 | P6 %Rl>

Id x6, 0(x1)
Pn \
ROB N
useex op [pl/PR1 [p2[PR2 LPRd
X |d 0] P/ X P8

X addi PO x3 ["P7

PHYSICAL REGISTER

MANAGEMER.L ...

Id x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6
Id x6, 0(x1)

Table
x0 ‘_A
X1 PO P2 B3
X2 P3 T [p2
X3 P1 P4 - P4 |
x4 /%&4@» -
x5 6| <x7>
X6 P3 “ P7 | <x3>
x7 [P6 P8 [<R1> |

ROB \R\
useex/lop |pl|PR1 |[p2/PR2. |Rd |[LPRd |FRd
X id |p| P7 ~x1[P8 [\PO
X addi PO x3] P7 | P1
X sub| p| P6 |p]| P5 x6 | P5 P3

PHYSICAL REGISTER

N[;A A GE;]v\ydEY]R\JQT Free List

Table
X0 Id x1, 0(x3
%1 P€PO P2 x1, 0(x3)
X2 P3 :
3 o b = oa addi x3, x1, #4
x4 P5| <x6> \ sub x6, x7, x6
X5 N P6 | <x7>
X6 P3 P7 [<x3> -» add x3, x3, x6
7 :
X7 | P6 8§<x1> Id x6, 0(x1)
Pn' N\
ROB
useexlop |pl{PR1 [p2 PR2~. |Rd |LPRd |[PRd
X d | p| P7 T x1 | P8 PO
X addi PO x3 | P7 Pl
X sub| p P6 |p P5 x6 | P5 P
X add P1 P3 | x3 |'P1 P

PHYSICAL REGISTER

x1 PO P2
X2 | P3
X3 P2 P4
x4 P5

x5
o pgEe by
X7 | P6 P8

<xX6>
<X7>
<X3>
<x1>

NAGEMENT

Id x1, 0(x3)
addi x3, x1, #4
sub x6, x7, x6
add x3, x3, x6

| Id x6, 0(x1)

ROB
useex|op |[plf|PR1 |p2PR2 |[Rd |LPRd |PRd
X d [p[P7 ~_ | x1 | P8 PO
X addi PO - x3 | P7 R1
X sub| p| P6 |p| P5 | x6 [P5 P3
X add P1 P3 x3 | P1 P
X Id PO x6 [TP3 P

PHYSICAL REGISTER
MAJ

A GED@EIMT Free List

Table Ol<xl>
x0
x1 [P&PO P2 Id x1, 0(x3)
X2 P3 i
% 55 b2 ; addi x3, x1, #4
x4 P5| <x6> P8 sub x6, x7, x6
x5 P6 | <x7> -
X6 P4 | P7[<x3> \ add x3, x3, x6
7 P8
x7 [P6 - X ~1d x6, 0(x1)

Pn |]

ROB [\
useex|op [pi|PR1 [p2/PR2 |Rd [\LPRd |PRd Execute &
X | x| Id pl| P7 x1 [F - PO Commit
X addi| pi—Po X3 P1
X sub| p[P6 [p| P5 |x6 | P5 P3
X add P1 | — P3 x3 | P1 P2
X Id | DA X6 | P3 P4

PHYSICAL REGISTER

MANAGEMENT .

Table 0[<x1>
x0 P1 <X3>
1 50 P> ld x1, 0(x3)
X2 P3 i
Xz 55 i addi x3, x1, #4
§451 Eg :x%iz sub x6, x7, x6
X
X6 m P7 add x3, x3, x6
7 P8
X7 LD Id x6, 0(x1)
Pn' |
ROB
useex/ op |pl/PR1 |p2 PR2
X_| X Iddd_ p .53 Execute &
X X 1daddl|] p I
X sub| p| P6 |p| P5 commit
X add| pl—PI P3
X [¢ p/ PO

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

o

