

 Pipelining is complicated by multiple and/or variable

latency functional units

 Out-of-order and/or pipelined execution requires

tracking of dependencies

 RAW

 WAR

 WAW

 Dynamic issue logic can support out-of-order execution

to improve performance

 Last time, looked at simple scoreboard to track out-of-order

completion

 Hardware register renaming can further improve

performance by removing hazards.

2

 Decode does register renaming and adds instructions to the

issue-stage instruction reorder buffer (ROB)

  renaming makes WAR or WAW hazards impossible

 Any instruction in ROB whose RAW hazards have been

satisfied can be issued.

  Out-of-order or dataflow execution

3

IF ID WB

ALU Mem

Fadd

Fmul

Issue

4

Renaming
table &
regfile

Reorder
buffer

Load
 Unit

FU FU
Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the
 Decode stage, which also associates tag with register in regfile
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

5

Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)
• It has not already started execution (“exec” bit is clear)
• Both operands are available (p1 and p2 are set)

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 ptr1
next

available

Ins# use exec op p1 src1 p2 src2

Destination

registers are

renamed to the

instruction’s

slot tag

ROB managed circularly
•“exec” bit is set when instruction begins execution
•When an instruction completes its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

6

Mult

1

1
2
3
4
5
6

load
buffers
(from
memory)

1
2
3
4

Adder

1
2
3

Floating-Point
Regfile

store buffers
(to memory)

...

instructions

Common bus ensures that data is made available
immediately to all the instructions waiting for it.
Match tag, if equal, copy value & set presence “p”.

Distribute
instruction
templates
by
functional
units

< tag, result >

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data

p tag/data
p tag/data 2

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data
p tag/data

7

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not show
up in the subsequent models until mid-Nineties.
 Why ?
Reasons

1. Effective on a very small class of programs
2. Memory latency a much bigger problem
3. Exceptions not precise!

 One more problem needed to be solved

Control transfers

8

It must appear as if an interrupt is taken between
two instructions (say Ii and Ii+1)

• the effect of all instructions up to and including Ii is
 totally complete
• no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

9

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6

 restore f2 restore f10

Consider interrupts

Precise interrupts are difficult to implement at high speed
 - want to start execution of later instructions before
 exception checks finished on earlier instructions

10

• Hold exception flags in pipeline until commit point (M stage)
• Exceptions in earlier pipe stages override later exceptions
• Inject external interrupts at commit point (override others)
• If exception at commit: update Cause and EPC registers, kill
 all stages, inject handler PC into fetch stage

Asynchronous
Interrupts

Exc
D

PC
D

PC
Inst.
Mem D Decode E M

Data
Mem W +

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC

Kill D
Stage

Kill F
Stage

Kill E
Stage

Illegal
Opcod
e

Overflow
Data Addr
Except

PC Address
Exceptions

Kill
Writebac
k

Select
Handler
PC

Commit
Point

11

Fetch: Instruction bits retrieved
from cache.

I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued
to execution units.
When execution completes, all results and
exception flags are available.

Decode: Instructions dispatched to
appropriate issue-stage buffer

Result Buffer

Commit: Instruction irrevocably updates
architectural state (aka “graduation”).

PC

Commit

Decode/Rename

12

• Instructions fetched and decoded into instruction
 reorder buffer in-order
• Execution is out-of-order ( out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Exception?

Kill
Kill Kill

Inject handler PC

13

Reorder buffer

ptr2
next to
commit

ptr1
next

available

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
 order  buffers can be maintained circularly
• on exception, clear reorder buffer by resetting ptr1=ptr2
 (stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

14

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer

Register File
(now holds only
committed state)

Reorder
buffer

Load
 Unit

FU FU FU
Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

15

Register
File

Reorder
buffer

Load
 Unit

FU FU FU
Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

Renaming table is a cache to speed up register name look up.
It needs to be cleared after each exception taken.
When else are valid bits cleared? Control transfers

r1 t v

r2

tag
valid bit

16

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

How much work is lost if
pipeline doesn’t follow
correct instruction flow?

~ Loop length x pipeline

width

 Quiz 2, Tuesday March 5

 Caches and Virtual memory L6 – L9, PS 2, Lab 2, readings

17

In-order execution machines:

 Assume no instruction issued after branch can write-back

before branch resolves

 Kill all instructions in pipeline behind mispredicted branch

18

–Multiple instructions following branch in program
order can complete before branch resolves

Out-of-order execution?

19

• Instructions fetched and decoded into instruction
 reorder buffer in-order
• Execution is out-of-order ( out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
 memory, is in-order

Temporary storage needed in ROB to hold results before commit

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill
Kill Kill

Exception? Inject handler PC

20

Fetch Decode

Execute

Commit Reorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

• Can have multiple unresolved branches in ROB
• Can resolve branches out-of-order by killing all the
 instructions in ROB that follow a mispredicted branch

Branch
Prediction

PC

Complete

21

t v t v t v
Registe

r File

Reorder
buffer Load

 Unit
FU FU FU

Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table r1

t v

r2

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

Rename
Snapshots

Ptr
2

next to

commit

Ptr
1

next

available

rollback

next

available

22

• On dispatch into ROB, ready sources can be in regfile or in ROB
dest (copied into src1/src2 if ready before dispatch)
• On completion, write to dest field and broadcast to src fields.
• On issue, read from ROB src fields

Register File
holds only
committed state

Reorder
buffer

Load
 Unit

FU FU FU
Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

ROB

23

Architectural Register

File Read

operands

during decode

Src Operands

Write sources

after decode

Read

operands

at issue

Functional Units

Write results

at

completion

Read

results

at

commit

Bypass newer

values at

decode

Result

Data

 Rename all architectural registers into a single physical

register file during decode, no register values read

 Functional units read and write from single unified register

file holding committed and temporary registers in execute

 Commit only updates mapping of architectural register to

physical register, no data movement

24

Unified Physical

Register File

Read operands at

issue

Functional Units

Write results at

completion

Committed

Register

Mapping

Decode Stage

Register

Mapping

25

Pipeline Design with Physical Regfile

Fetch
Decode &
Rename

Reorder Buffer PC

Branch
Prediction

Commit

Branch
Resolution

Branch
Unit

ALU MEM
Store
Buffer

D$

Execute

In-Order

In-Order Out-of-Order

Physical Reg. File

kill

kill

kill

kill

../2004/F04/Handouts/L15-BranchPrediction.james.ppt#7. Slide 7

26

ld x1, (x3)

addi x3, x1, #4

sub x6, x7, x9

add x3, x3, x6

ld x6, (x1)

add x6, x6, x3

sd x6, (x1)

ld x6, (x11)

ld P1, (Px)

addi P2, P1, #4

sub P3, Py, Pz

add P4, P2, P3

ld P5, (P1)

add P6, P5, P4

sd P6, (P1)

ld P7, (Pw)

Rename

When can we reuse a physical register?
 When next write of same architectural register commits

• Physical regfile holds committed and speculative values

• Physical registers decoupled from ROB entries (no data in ROB)

27

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

ROB

Rename
Table

Physical Regs Free List

ld x1, 0(x3)

addi x3, x1, #4

sub x6, x7, x6

add x3, x3, x6

ld x6, 0(x1)

p
p
p

P0
P1
P3
P2
P4

(LPRd requires
third read port
on Rename
Table for each
instruction)

<x1> P8 p

28

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

ld x1, 0(x3)

addi x3, x1, #4

sub x6, x7, x6

add x3, x3, x6

ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8

29

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

ld x1, 0(x3)

addi x3, x1, #4

sub x6, x7, x6

add x3, x3, x6

ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1

30

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

ld x1, 0(x3)

addi x3, x1, #4

sub x6, x7, x6

add x3, x3, x6

ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3

31

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

ld x1, 0(x3)

addi x3, x1, #4

sub x6, x7, x6

add x3, x3, x6

ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3
P1

P2

x add P1 P3 x3 P2

32

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

ld x1, 0(x3)

addi x3, x1, #4

sub x6, x7, x6

add x3, x3, x6

ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1> P8 p

x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

x addi P0 x3 P1
P5

P3

x sub p P6 p P5 x6 P3
P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4 P3

P4

33

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x ld p P7 x1 P0
x addi P0 x3 P1
x sub p P6 p P5 x6 P3

x ld p P7 x1 P0

ld x1, 0(x3)

addi x3, x1, #4

sub x6, x7, x6

add x3, x3, x6

ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<x1> P8 p

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4 P3

P4

Execute &
Commit

p

p

p <x1>

P8

x

34

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x sub p P6 p P5 x6 P3
x addi P0 x3 P1 x addi P0 x3 P1

ld x1, 0(x3)

addi x3, x1, #4

sub x6, x7, x6

add x3, x3, x6

ld x6, 0(x1)

Free List
P0
P1
P3
P2
P4

<x6> P5
<x7> P6
<x3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

P8

x x ld p P7 x1 P0

x5
P5 x6
P6 x7

x0
P8 x1

x2
P7 x3

x4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 x3 P2
x ld P0 x6 P4 P3

P4

Execute &
Commit p

p

p <x1>

P8

x

p

p <x3>

P7

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

35

