ARCHITECTURE OF
COMPUTER SYSTEMS
LECTURE 10 -
COMPLEX PIPELINES, _
OUT-OF-ORDER ISSUE{®Y
REGISTER RENAMING

LAST TIME IN LECTURE 9

= Modern page-based virtual memory systems provide:
= Translation, Protection, Virtual memory.

= Translation and protection information stored in page tables, held in main
memory

= Translation and protection information cached in “translation-lookaside
buffer” (TLB) to provide single-cycle translation+protection check in
common case

= Virtual memory interacts with cache design

= Physical cache tags require address translation before tag lookup, or use
untranslated offset bits to index cache.

= Virtual tags do not require translation before cache hit/miss determination, but
need to be flushed or extended with ASID to cope with context swaps. Also,
must deal with virtual address aliases (usually by disallowing copies in cache).

@

COMPLEX PIPELINING:
MOTIVATION

Pipelining becomes complex when we want
high performance in the presence of:

= Long latency or partially pipelined floating-point
units

= Memory systems with variable access time
= Multiple arithmetic and memory units

FLOATING-POINT UNIT (FPU)

= Much more hardware than an integer unit
= Single-cycle FPU is a bad idea - why?

= Common to have several FPU’s
= Common to have different types of FPU’s: Fadd, Fmul, Fdiv, ...
= An FPU may be pipelined, partially pipelined or not pipelined

= To operate several FPU’s concurrently the FP register file needs to have
more read and write ports

FUNCTIONAL UNIT
CHARACTERISILCS

fully
pipelined

partially
pipelined

lcyclcyclcyc

—

2 cycC 2 cycC

Functional units have internal pipeline registers

— operands are latched when an instruction

enters a functional unit
— following instructions are able to write register file
during a long-latency operation

MATENGROINTad Sboin

atapath and integer datapath is
determined by ISA

«RISC-V ISA

= separate register files for FP and Integer
instructions

= the only interaction is via a set of
move/convert instructions (some ISA’s don’t
even permit this)

= separate load/store for FPR’s and GPR’s but
both use GPR’s for address calculation

= FP compares write integer registers, then use
integer branch

0

REALISTIC MEMORY
SYSTEMS

Common approaches to improving memory performance:
= Caches - single cycle except in case of a miss

O00stall
= Banked memory - multiple memory accesses

0 bank conflicts

= split-phase memory operations (separate memory request from response),
many in flight

ha&ﬁﬂ@mfrﬂ%qelsgstﬁotllggeglain memory is usually much greater

than one cycle and often unpredictable
Solving this problem is a central issue in computer architecture

@

1ODOULYD 1IN CUUIVINTIEA

PIPELINE CONTROL

e Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle

e Structural conflicts at the write-back stage due to variable latencies of different
functional units

e Qut-of-order write hazards due to variable latencies of different functional
units

e How to handle exceptions?

ALU [T Mem \
WB

>
Fadd 7: —
Fmul

Fdiv

IF ™ ID

I EXY TN

Inst.
Mem

COM
PIPEL.

Decode }+

= Delay writeback so all

operations have same
latency to W stage

= Write ports never

oversubscribed (one inst. in
& one inst. out every cycle)

= Stall pipeline on long latency
operations, e.g., divides,
cache misses
= Handle exceptions in-order
at commit point
How to prevent increased writeback latency
from slowing down single cycle integer

operations? By/passing

—
—

FMul

FDi

npipelin
ivider

Commit

Point

—| FPRs

= Fetch two instructions per _cfycle; _
issue both simultaneously if one is
mt_egter/memory and other is floating
poin

= Inexpensive way of increasing

throuzigh}aut examples include Alpha
(21190966) (1992) & MIPS R5000 series

= Same jdea can be extended to wider
issue by duplicating functional units
&e.%. 4-issue UltraSPARC & Alpha
1164) but regfile ports and
bypassing costs grow quickly

FAdd

Commit

Point

FYFED U UALTA

HAM B 2 sequence of

r BB op r;
type of instructions

Data-dependence
ry& rpopr,

re 3 opr,

Anti-dependence
ry 10p T,
r14 op s
Output-dependence

<Ar_,, r,opr,
ry Bl rgopry

Read-after-Write
(RAW) hazard

Write-after-Read
(WAR) hazard

Write-after-Write
(WAW) hazard

=)

REGISTER V5. MEMORY
DEPENDENCE

Data hazards due to register operands can be
determined at the decode stage, but data hazards due
to memory operands can be determined only after
computing the effective address

Store: M[rl + disp1] [0 r2
Load: r3 0 M[r4 + disp?2]

Does (r1 + displ) = (r4 + disp2) ?

LALLM TIANLANID. AN

EXAMPLE

FDIV.D f6, 6, f4
I, FLD f2, 45(x3)
I, FMULD fo, 2, f4

I, FDIV.D f8, 6, f2 \

I, FSUB.D f10, fp, 6 <

I, FADD.D f6, 8

RAW Hazards
WAR Hazards
WAW Hazards

e

INSTRUCTEON

ls

FLD

FMULT.D

FDIV.D

FSUB.D

FADD.D

f2,

Valid orderings:

in-order

Iy 1

out-of-order |,

out-of-order I,

OUT-OF-ORDER

] —~ Latency
COMPEETION: -
IN-ORDER I$SUHED f2, 45(x3) 1

I, FMULT.DfO, f2, f4 3

I, FDIV.D f8, f6, f2 4

s FSUB.D f10, fO, f6 1

I FADD.D f6, f8, f2 1
in-order comp 1 2 1234
out-of-ordercomp 1 2 2 3 1 4 3 5

]

(O8]

-~

|-~

[e))

U

[op}

G

COMPLEX |

IF 1 1D

Fadd

Fmul

Can we solve write
hazards without

equalizing all pipeline
depths and without

Fdiv

bypassing?

WHEN IS IT SAFE TO ISSUE
AN RS R R g e

The following checks need to be made

before the Issue stage can dispatch an
instruction

= Is the required function unit available?
= Is the input data available? 000 RAW?

= [s it safe to write the destination?
OO0OWAR?0 WAW?

= Is there a structural conflict at the WB
stage?

A DATA STRUCTURE FOR CORRECT ISSUES
KEEPS TRACK OF THE STATUS OF FUNCTIONAL UNITS

Name Blusy ®p Dest Srcl Src2
Int
Mem
Add1
Add2
Add3
Multl
Mult2
Div

The instruction i at the Issue stage consults this table

FU available? check the busy column

RAW? search the dest column for i’s sources
WAR? search the source columns for i’'s destination
WAW? search the dest column for i's destination

An entry is added to the table if no hazard is detected,;

An entry is removed from the table after Write-Back

e

STRUCTURE
ASSUMING IN-ORDER
Iﬁ@ﬁ;ﬁ instruction is not dispatched by the Issue stage if a

exists or the required FU is busy, and that operands
are latched by functional unit on issue:

Can the dispatched instruction cause a
WAR hazard ?

NO: Operands read at issue

WAW hazard ?
YES: Out-of-order completion

SIMPLIFYING THE DATA
STRUCTURE ...

=No WAR hazard

00 no need to keep srcl and src?
= The Issue stage does not dispatch an instruction in

=case of a WAW hazard

O0a register name can occur at most once in the dest column

 WP[reg#] : a bit-vector to record the registers for

which writes are pending
= These bits are set by the Issue stage and cleared by the WB stage

0 Each pipeline stage in the FU's must carry the dest field and a flag to
indicate if it is valid “the (we, ws) pair”

L inb IR A DN,

R U5

SCGREBQG. .
ORDERISSUES. & ™

WP|[reg#] : a bit-vector to record the registers for which writes

are pending.
These bits are set by Issue stage and cleared by WB stage

Issue checks the instruction (opcode dest srcl src2)
against the scoreboard (Busy & WP) to dispatch

FU available? Busy[FU#]

RAW? WP[src1] or WP[src2]
WAR? cannot arise
WAW? WP[dest]

=)

SCOREBOARD DYNAMICS

Functional Unit Status Registers Reserved
Int(1),Add(1), Mult(3) Div(4) ;WB| for Writes
to |1, fo| f6
ti|r, f2 f6 fo] f2
t2 6 | F2] [fe] f2 I,
3|75 fO 6| fp, f0
t4 fo f6 fe} f I,
t5 fp i 1%,
t6 { fo| [fO] 75 I
74 D T o
t8 f_1|() FLa
t9 ’
t10|1, f6 f6
t11 f6 f6
I, FDIV.D fe, fe6, f4
I, FLD f2, 45(x3)

I, FMULT.D fO, f2, f4

I. FSUB.D f10,f0, f6
I, FADD.D f6, f8, f2

)

IN-URDULERN 1D0UL
LIMITATIQNS AN EXAMPLE

FLD f2, 34(x2)
2 FLD f4, 45(x3) long
3 FMULT.Df6, f4, f2 3
4 FSUB.D f8, 2, f2 1
5 FDIV.D f4, 2, f8 4

6 FADD.D f10,f6, f4 1

In-order: 1(2,1). 2344 35. . .566

In-order issue restriction prevents
instruction 4 from being dispatched

OUT-OF-ORD

|-IF —1ID

JwaB

Fadd 7

Fmul

= Issue stage buffer holds multiple instructions waiting to
issue.

- Decode adds next instruction to buffer if there is space and
the instruction does not cause a WAR or WAW hazard.
= Note: WAR possible again because issue is out-of-order (WAR not

ossible with in-order issue and latching of input operands at
unctional unit)

= Any instruction in buffer whose RAW hazards are satisfied
can be issued (for now at most one dispatch per cc?/cle). On a
write back (WB), new instructions may get enabled. @

s Sref® VDad | Va’ SO miln wibs 0 O aie om0 iR o e ala e e = €W St =N

ORDER AND OUT-OF-
; @)RD ER) /atenlcy

2 FLD f4, 45(x3) long
3 FMULT.Df6, f4, f2 3

4 FSUB.D f8, 2, f2 1

5 FDIV.D f4, 2, f8 4

N

6 FADD.D f10,f6, f4 1

In-order: 1(2,1). 2344 35. . .56
Out-of-order: 1(2,1)44. .. .23 ..35..

Iu1 (o)}

66

Out-of-order execution did not allow any significant improvement!

LANJ VYV AVA/NIN &

INSTRUCTIONS CAN
BE IN THE PIPELINE?

Which features of an ISA limit the number of
instructions in the pipeline?

Number of Registers

Out-of-order dispatch by itself does not provide any
significant performance improvement!

VLN ULVERINRT 1 ihE,

LACK OF REGISTER
NAMES

Floating Point pipelines often cannot be kept filled with
small number of registers.
IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution
in 1967 using on-the-fly register renaming

)

s Sref® VDad | Va’ SO miln wibs 0 O aie om0 iR o e ala e e = €W St =N

ORDER AND OUT-OF-
@)RD E& /atenlcy

FLD f4, 45(x3) long
FMULT.Df6, f4, f2 3
FSUB.D f8, 2, f2 1
FDIV.D fa’, f2, 8 4

FADD.D f10,f6, f4’ 1

In-order: 1(2,1). 2344 35...566
Out-of-order: 1(2,1)445 ... 2(3,5)366

Any antidependence can be eliminated by renaming.

(renaming P2 additional storage)
Can it be done in hardware? yes!

)

REGISTER RENAMING
AL ‘Meml\:

Fadd 7 AL

Fmul

Decode does register renaming and adds instructions to the
issue-stage instruction reorder buffer (ROB)

0 renaming makes WAR or WAW hazards impossible

Any instruction in ROB whose RAW hazards have been
satisfied can be dispatched.

0 Out-of-order or dataflow execution

2)

RENIADR

regfile

Reorder

buffer

Replacing the

tag by its value }
IS an expensive Load
operation Unit

|

FU

FU

Store
Unit
<t result>

e Instruction template (i.e., tag t) is allocated by the Decode
stage, which also associates tag with register in regfile
e When an instruction completes, its tag is deallocated

&)

KEUKUEK DUI'ILIN

MANAGEMENT,: ..

next tO
deallocate \ | |
* Destination registers
* are renamed to the
ptrl instruction’s slot tag
next
. —
available .
n

ROB managed circularly
e “exec” bit is set when instruction begins execution
e\WWhen an instruction completes its “use” bit is marked free
e ptr, is incremented only if the “use” bit is marked free

Instruction slot is candidate for execution when:
e |t holds a valid instruction (“use” bit is set)
e |t has not already started execution (“exec” bit is clear)
e Both operands are available (p1 and p2 are set)

NLINALVIIINGg O UU LU -

ORDER ISSUE

AN ExR@paming table

Reorder buffer

Ins# use exec op pl srcl p2 src2
1 ©] 0o | LD
2 D| o | LD
3 1| 0 | MUL| 0] +2 1 vl
4 DI 0 [SUBJI1| wvi 1 vl
5 1|0 | DIV|1 w1 0 o

p data
f1
" f2 vl
f3
f4 5
f5
f6 t3
f7
f8 4l
1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D fe, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D fa, f2, 18
6 FADD.D f10, f6, f4

e When are tags in sources
replaced by data?
Whenever an FU produces data

e When can a name be reused?
Whenever an instruction completes

2

[BM 36(

1lp a/data

91 FLOATIN Gruingron

POINTE ey B - e
b ftag/data fe 2 tag/data [¢
o tag/data | (from 3 tag/gata
R. M. TOMASUL {tg%gg:g memory) 4 o ttag/data
6
Distribute I I
instruction tag/data |p ftag/data
tag/data |p tag/data 1 tag/data igtag/data
templates tag/data |p ftag/data 2 tag/data |p ftag/data
by
functional \ Adder / \ Mult /
units
H <tag,_m_wjx> |
}tag‘)data Common bus ensures that data is made available
store buffers E}tag/data immediately to all the instructions waiting for it.
(to memory) |p ftag/data “ »

Match tag, if equal, copy value & set presence “p”.

&)

EFFECTIVENESS?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not show
up in the subsequent models until mid-Nineties.
Why ?

Reasons

1. Effective on a very small class of programs

2. Memory latency a much bigger problem

3. Exceptions not precise!

One more problem needed to be solved
Control transfers

o

ACKNOWLEDGEMENTS

= These slides contain material developed and copyright by:
= Arvind (MIT)
= Krste Asanovic (MIT/UCB)
= Joel Emer (Intel/MIT)
= James Hoe (CMU)
= John Kubiatowicz (UCB)
= David Patterson (UCB)

= MIT material derived from course 6.823
= UCB material derived from course CS252

o

