


 Modern page-based virtual memory systems provide: 

 Translation, Protection, Virtual memory. 

 Translation and protection information stored in page tables, held in main 

memory 

 Translation and protection information cached in “translation-lookaside 

buffer” (TLB) to provide single-cycle translation+protection check in 

common case 

 Virtual memory interacts with cache design 

 Physical cache tags require address translation before tag lookup, or use 

untranslated offset bits to index cache. 

 Virtual tags do not require translation before cache hit/miss determination, but 

need to be flushed or extended with ASID to cope with context swaps.  Also, 

must deal with virtual address aliases (usually by disallowing copies in cache). 
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Pipelining becomes complex when we want 

high performance in the presence of: 

 Long latency or partially pipelined floating-point 

units 

 Memory systems with variable access time 

 Multiple arithmetic and memory units 
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 Much more hardware than an integer unit 

 Single-cycle FPU is a bad idea – why? 

  Common to have several FPU’s 

  Common to have different types of FPU’s: Fadd, Fmul, Fdiv, … 

 An FPU may be pipelined, partially pipelined or not pipelined 

 To operate several FPU’s concurrently the FP register file needs to have 

more read and write ports 
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fully 
pipelined 

partially 
pipelined 

Functional units have internal pipeline registers 
 

 operands are latched when an instruction  
enters a functional unit  

 following instructions are able to write register file 
during a long-latency operation 

1cyc 1cyc 1cyc 

2 cyc 2 cyc 



Interaction between floating-point 

datapath and integer datapath is 

determined by ISA 

RISC-V ISA  

  separate register files for FP and Integer 

instructions 

 the only interaction is via a set of 

move/convert instructions  (some ISA’s don’t 

even permit this) 

  separate load/store for FPR’s and GPR’s but 

both use GPR’s for address calculation  

  FP compares write integer registers, then use 

integer branch 
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Common approaches to improving memory performance: 

 Caches - single cycle except in case of a miss 

 stall 

 Banked memory - multiple memory accesses 

  bank conflicts 

 split-phase memory operations (separate memory request from response), 

many in flight 

  out-of-order responses 
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Latency of access to the main memory is usually much greater 
than one cycle and often unpredictable 

Solving this problem is a central issue in computer architecture  
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IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPRs 
FPRs 

• Structural conflicts at the execution stage if some FPU or memory unit is not 
pipelined and takes more than one cycle 
• Structural conflicts at the write-back stage due to variable latencies of different 
functional units 
• Out-of-order write hazards due to variable latencies of different functional 
units 
• How to handle exceptions? 



 Delay writeback so all 

operations have same 

latency to W stage 

 Write ports never 

oversubscribed (one inst. in 

& one inst. out every cycle) 

 Stall pipeline on long latency 

operations, e.g., divides, 

cache misses 

 Handle exceptions in-order 

at commit point 
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Commit 
Point 

PC 
Inst. 
Mem D Decode X1 X2 

Data 
Mem W + GPRs 

X2 W FAdd X3 

X3 

FPRs X1 

X2 FMul X3 

X2 FDiv X3 

Unpipelined 
divider 

How to prevent increased writeback latency 
from slowing down single cycle integer 
operations?  Bypassing 



 Fetch two instructions per cycle; 

issue both simultaneously if one is 

integer/memory and other is floating 

point 

 Inexpensive way of increasing 

throughput, examples include Alpha 

21064 (1992) & MIPS R5000 series 

(1996) 

 Same idea can be extended to wider 

issue by duplicating functional units 

(e.g. 4-issue UltraSPARC & Alpha 

21164) but regfile ports and 

bypassing costs grow quickly 
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Commit 

Point 

2 

PC 

Inst. 

Mem 
D 

Dual 

Decod

e 

X1 X2 

Data 

Mem W + GPRs 

X2 W FAdd X3 

X3 

FPRs X1 

X2 FMul X3 

X2 FDiv X3 

Unpipeline

d divider 



11 

Consider executing a sequence of  
  rk  ri  op  rj  
type of instructions 

Data-dependence 
r3    r1 op r2  Read-after-Write   
r5    r3 op r4 (RAW) hazard 

Anti-dependence 
r3    r1 op r2 Write-after-Read  
r1    r4 op r5 (WAR) hazard 

Output-dependence 
r3    r1 op r2   Write-after-Write  
r3    r6 op r7    (WAW) hazard 



Data hazards due to register operands can be 

determined at the decode stage, but data hazards due 

to memory  operands can be determined only after 

computing the effective address 

 

Store:  M[r1 + disp1]  r2   

Load:  r3  M[r4 + disp2] 

 

Does (r1 + disp1) = (r4 + disp2) ? 
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I1  FDIV.D  f6,  f6, f4 
 
I2  FLD  f2, 45(x3) 
 
I3  FMUL.D  f0, f2, f4 
 
I4  FDIV.D  f8, f6, f2 
 
I5 FSUB.D  f10, f0, f6 
 
I6  FADD.D  f6, f8, f2 

RAW Hazards 
WAR Hazards 
WAW Hazards 
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I6 

I2 

I4 

I1 

I5 

I3 

Valid orderings: 
in-order I1  I2  I3  I4  I5 I6 
 
out-of-order  
 
out-of-order 

I1  FDIV.D  f6,  f6, f4 
 
I2  FLD  f2, 45(x3) 
 
I3  FMULT.D  f0, f2, f4 
 
I4  FDIV.D  f8, f6, f2 
 
I5 FSUB.D  f10, f0, f6 
 
I6  FADD.D  f6, f8, f2 

I2  I1  I3  I4  I5 I6 

I1  I2 I3  I5  I4 I6 
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             Latency 
I1  FDIV.D  f6,  f6, f4   4 
 
I2 FLD  f2, 45(x3)   1 
 
I3 FMULT.D f0, f2, f4  3 
 
I4 FDIV.D  f8, f6, f2  4 
 
I5 FSUB.D  f10, f0, f6  1 
 
I6 FADD.D  f6, f8, f2  1 

in-order comp    1   2 
 
out-of-order comp  1   2 

1   2   3   4        3   5   4   6   5   6 

2   3   1   4   3   5   5   4   6   6 
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IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 
FPR’s 

Can we solve write 
hazards without 
equalizing all pipeline 
depths and without 
bypassing? 



Suppose a data structure keeps track of all 

the instructions in all the functional units 

The following checks need to be made 

before the Issue stage can dispatch an 

instruction 

  Is the required function unit available? 

  Is the input data available?    RAW? 

  Is it safe to write the destination?  

WAR?  WAW? 

  Is there a structural conflict at the WB 

stage? 
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The instruction i at the Issue stage consults this table 
 

FU available?  check the busy column 
RAW?  search the dest column for i’s sources 
WAR?  search the source columns for i’s destination 
WAW?  search the dest column for i’s destination 
 

An entry is added to the table if no hazard is detected; 
An entry is removed from the table after Write-Back 

  Name Busy  Op Dest Src1 Src2   
Int 
Mem  
Add1 
Add2 
Add3 
Mult1 
Mult2 
Div 
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Suppose the instruction is not dispatched by the Issue stage if a 
RAW hazard exists or the required FU is busy, and that operands 
are latched by functional unit on issue: 
 

Can the dispatched instruction cause a 
WAR hazard ? 
 
WAW hazard ? 

NO: Operands read at issue 

YES: Out-of-order completion 



No WAR hazard  

 no need to keep src1 and src2 

The Issue stage does not dispatch an instruction in  

case of a WAW hazard 

a register name can occur at most once in the dest column 

WP[reg#] : a bit-vector to record the registers for 

which writes are pending 

 These bits are set by the Issue stage and cleared by the WB stage 

 Each pipeline stage in the FU's must carry the dest field and a flag to 

indicate if it is valid “the (we, ws) pair” 
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Busy[FU#] : a bit-vector to indicate FU’s availability. 
  (FU = Int, Add, Mult, Div) 

These bits are hardwired to FU's. 
 

WP[reg#] : a bit-vector to record the registers for which writes 
are pending.  

These bits are set by Issue stage and cleared by WB stage 
 

Issue checks the instruction (opcode dest src1 src2)  
against the scoreboard (Busy & WP) to dispatch 
 

FU available?   
RAW?   
WAR? 

WAW?   

Busy[FU#] 
WP[src1] or WP[src2] 
cannot arise 
WP[dest] 
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I1   FDIV.D  f6,  f6, f4 
I2  FLD  f2, 45(x3)  
I3  FMULT.D f0, f2, f4 
I4  FDIV.D  f8, f6, f2 
I5  FSUB.D  f10, f0, f6 
I6  FADD.D  f6, f8, f2 

Functional Unit Status       Registers Reserved  
Int(1) Add(1)  Mult(3)   Div(4)    WB for Writes 

 t0  I1        f6     f6 

 t1  I2   f2         f6   f6, f2 

 t2                  f6      f2    f6, f2  I2 

 t3  I3      f0      f6     f6, f0 

 t4          f0             f6    f6, f0  I1 

 t5  I4             f0 f8      f0, f8 

 t6          f8          f0    f0, f8  I3 

 t7  I5        f10  f8     f8, f10 

 t8        f8 f10    f8, f10  I5 

 t9             f8    f8  I4 

t10 I6        f6         f6 

t11                    f6     f6  I6 



23 

             latency 
1 FLD  f2,  34(x2)  1 
 
2 FLD  f4, 45(x3)  long 
 
3 FMULT.D f6, f4, f2 3 
 
4 FSUB.D  f8, f2, f2 1 
 
5 FDIV.D  f4, f2, f8 4 
 
6 FADD.D  f10, f6, f4 1 

In-order:   1 (2,1) .  .  .  .  .  .  2 3 4 4  3 5 .  .  . 5 6 6 

1 2 

3 4 

5 

6 

In-order issue restriction prevents 
instruction 4 from being dispatched 



 Issue stage buffer holds multiple instructions waiting to 

issue. 

 Decode adds next instruction to buffer if there is space and 

the instruction does not cause a WAR or WAW hazard. 

 Note: WAR possible again because issue is out-of-order (WAR not 

possible with in-order issue and latching of input operands at 

functional unit) 

 Any instruction in buffer whose RAW hazards are satisfied 

can be issued (for now at most one dispatch per cycle). On a 

write back (WB), new instructions may get enabled. 
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IF ID WB 

ALU Mem 

Fadd 

Fmul 

Issue 
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             latency 
1 FLD  f2,  34(x2)  1 
 
2 FLD  f4, 45(x3)  long 
 
3 FMULT.D f6, f4, f2 3 
 
4 FSUB.D  f8, f2, f2 1 
 
5 FDIV.D  f4, f2, f8 4 
 
6 FADD.D  f10, f6, f4 1 

In-order:   1 (2,1) .  .  .  .  .  .  2 3 4 4  3 5 .  .  . 5 6 6 

1 2 

3 4 

5 

6 

Out-of-order:    1 (2,1) 4 4 .  .  .  .  2 3  .  .  3 5 .  .  . 5 6 6 

Out-of-order execution did not allow any significant improvement! 
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Which features of an ISA limit the number of 
instructions in the pipeline? 
 
 
 
 
Out-of-order dispatch by itself does not provide any 
significant performance improvement! 

Number of Registers 



27 

Floating Point pipelines often cannot be kept filled with 
small number of registers. 
 IBM 360 had only 4 floating-point registers 
 

Can a microarchitecture use more registers than  
specified by the ISA without loss of ISA compatibility ? 
 

Robert Tomasulo of IBM suggested an ingenious solution 
in 1967 using on-the-fly register renaming 
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             latency 
1 FLD  f2,  34(x2)  1 
 
2 FLD  f4, 45(x3)  long 
 
3 FMULT.D f6, f4, f2 3 
 
4 FSUB.D  f8, f2, f2 1 
 
5 FDIV.D  f4’, f2, f8 4 
 
6 FADD.D  f10, f6, f4’ 1 

1 2 

3 4 

5 

6 

Any antidependence can be eliminated by renaming. 
 (renaming   additional storage)   
 Can it be done in hardware? yes! 

X 

In-order:   1 (2,1) .  .  .  .  .  .  2 3 4 4  3 5 .  .  . 5 6 6 
Out-of-order:    1 (2,1) 4 4 5  .  .  .  2 (3,5) 3 6 6 



 Decode does register renaming and adds instructions to the 

issue-stage instruction reorder buffer (ROB) 

     renaming makes WAR or WAW hazards impossible 

 

 Any instruction in ROB whose RAW hazards have been 

satisfied can be dispatched.  

    Out-of-order or dataflow execution 
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e 
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Renaming  
table & 
regfile 

Reorder  
buffer 

Load 
 Unit 

FU FU Store 
 Unit 

< t, result > 

Ins#   use  exec   op    p1    src1   p2   src2 t1 
t2 
. 
. 
tn 

• Instruction template (i.e., tag t) is allocated by the Decode 
stage, which also associates tag with register in regfile 
• When an instruction completes, its tag is deallocated 

Replacing the  
tag by its value 
is an expensive  
operation 
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Instruction slot is candidate for execution when: 
• It holds a valid instruction (“use” bit is set) 
• It has not already started execution (“exec” bit is clear) 
• Both operands are available (p1 and p2 are set) 

t1 
t2 
. 
. 
. 
 
 
 
 
tn 
 

ptr2  
next to  

deallocate 

 ptr1 
next 

available 

Ins#     use   exec      op     p1     src1      p2      src2 

Destination registers 
are renamed to the 
instruction’s slot tag 

ROB managed circularly 
•“exec” bit is set when instruction begins execution  
•When an instruction completes its “use” bit is marked free 
• ptr2 is incremented only if the “use” bit is marked free 
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• When are tags in sources  
   replaced by data? 
 
• When can a name be reused? 

1 FLD  f2,  34(x2) 
2 FLD  f4, 45(x3) 
3 FMULT.D f6, f4, f2 
4 FSUB.D f8, f2, f2 
5 FDIV.D  f4, f2, f8 
6 FADD.D f10, f6, f4 

Renaming table Reorder buffer 

Ins# use exec   op  p1   src1   p2  src2 
t1 
t2 
t3 

t4 

t5 

. 

. 

data / ti 

     p    data 
f1 
f2 
f3 
f4 
f5 
f6 
f7 
f8 

Whenever an FU produces data 

Whenever an instruction completes 

t1 

   1          1        0        LD      

t2 

   2          1        0        LD      

   5          1        0        DIV       1        v1           0         t4      

   4          1        0        SUB     1        v1           1         v1 

t4 

   3          1        0        MUL     0        t2            1         v1 

t3 

t5 

v1 
v1 

   1          1        1        LD                     0 

   4          1        1        SUB     1        v1           1         v1    4           0 

v4 

   5          1        0        DIV       1        v1           1         v4      

   2          1        1        LD         2           0      

   3          1        0        MUL     1        v2            1         v1 
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Mult 

1 

1 
2 
3 
4 
5 
6 

load 
buffers 
(from  
memory) 

1 
2 
3 
4 

Adder 

1 
2 
3 
 

Floating-Point 
Regfile 

store buffers 
(to memory) 

... 

instructions 

Common bus ensures that data is made available 
immediately to all the instructions waiting for it. 
Match tag, if equal, copy value & set presence “p”. 

Distribute  
instruction  
templates 
by  
functional 
units 

< tag, result > 

p tag/data 
p tag/data 
p tag/data 

p tag/data 
p tag/data 
p tag/data 

p tag/data 
p tag/data 
p tag/data 

p tag/data 
p tag/data 

p tag/data 
p tag/data 2 

p tag/data 
p tag/data 
p tag/data 

p tag/data 
p tag/data 
p tag/data 

p tag/data 
p tag/data 
p tag/data 
p tag/data 
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Renaming and Out-of-order execution was first 
implemented in 1969 in IBM 360/91 but did not show 
up in the subsequent models until mid-Nineties. 
   Why ? 
Reasons 

1. Effective on a very small class of programs 
2. Memory latency a much bigger problem 
3. Exceptions not precise! 
 
 One more problem needed to be solved 

Control transfers 



 These slides contain material developed and copyright by: 

 Arvind (MIT) 

 Krste Asanovic (MIT/UCB) 

 Joel Emer (Intel/MIT) 

 James Hoe (CMU) 

 John Kubiatowicz (UCB) 

 David Patterson (UCB) 

 

 MIT material derived from course 6.823 

 UCB material derived from course CS252 
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