

 Modern page-based virtual memory systems provide:

 Translation, Protection, Virtual memory.

 Translation and protection information stored in page tables, held in main

memory

 Translation and protection information cached in “translation-lookaside

buffer” (TLB) to provide single-cycle translation+protection check in

common case

 Virtual memory interacts with cache design

 Physical cache tags require address translation before tag lookup, or use

untranslated offset bits to index cache.

 Virtual tags do not require translation before cache hit/miss determination, but

need to be flushed or extended with ASID to cope with context swaps. Also,

must deal with virtual address aliases (usually by disallowing copies in cache).

2

Pipelining becomes complex when we want

high performance in the presence of:

 Long latency or partially pipelined floating-point

units

 Memory systems with variable access time

 Multiple arithmetic and memory units

3

 Much more hardware than an integer unit

 Single-cycle FPU is a bad idea – why?

 Common to have several FPU’s

 Common to have different types of FPU’s: Fadd, Fmul, Fdiv, …

 An FPU may be pipelined, partially pipelined or not pipelined

 To operate several FPU’s concurrently the FP register file needs to have

more read and write ports

4

5

fully
pipelined

partially
pipelined

Functional units have internal pipeline registers

 operands are latched when an instruction
enters a functional unit

 following instructions are able to write register file
during a long-latency operation

1cyc 1cyc 1cyc

2 cyc 2 cyc

Interaction between floating-point

datapath and integer datapath is

determined by ISA

RISC-V ISA

 separate register files for FP and Integer

instructions

 the only interaction is via a set of

move/convert instructions (some ISA’s don’t

even permit this)

 separate load/store for FPR’s and GPR’s but

both use GPR’s for address calculation

 FP compares write integer registers, then use

integer branch

6

Common approaches to improving memory performance:

 Caches - single cycle except in case of a miss

 stall

 Banked memory - multiple memory accesses

 bank conflicts

 split-phase memory operations (separate memory request from response),

many in flight

 out-of-order responses

7

Latency of access to the main memory is usually much greater
than one cycle and often unpredictable

Solving this problem is a central issue in computer architecture

8

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different
functional units
• Out-of-order write hazards due to variable latencies of different functional
units
• How to handle exceptions?

 Delay writeback so all

operations have same

latency to W stage

 Write ports never

oversubscribed (one inst. in

& one inst. out every cycle)

 Stall pipeline on long latency

operations, e.g., divides,

cache misses

 Handle exceptions in-order

at commit point

9

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W + GPRs

X2 W FAdd X3

X3

FPRs X1

X2 FMul X3

X2 FDiv X3

Unpipelined
divider

How to prevent increased writeback latency
from slowing down single cycle integer
operations? Bypassing

 Fetch two instructions per cycle;

issue both simultaneously if one is

integer/memory and other is floating

point

 Inexpensive way of increasing

throughput, examples include Alpha

21064 (1992) & MIPS R5000 series

(1996)

 Same idea can be extended to wider

issue by duplicating functional units

(e.g. 4-issue UltraSPARC & Alpha

21164) but regfile ports and

bypassing costs grow quickly

10

Commit

Point

2

PC

Inst.

Mem
D

Dual

Decod

e

X1 X2

Data

Mem W + GPRs

X2 W FAdd X3

X3

FPRs X1

X2 FMul X3

X2 FDiv X3

Unpipeline

d divider

11

Consider executing a sequence of
 rk ri op rj
type of instructions

Data-dependence
r3 r1 op r2 Read-after-Write
r5 r3 op r4 (RAW) hazard

Anti-dependence
r3 r1 op r2 Write-after-Read
r1 r4 op r5 (WAR) hazard

Output-dependence
r3 r1 op r2 Write-after-Write
r3 r6 op r7 (WAW) hazard

Data hazards due to register operands can be

determined at the decode stage, but data hazards due

to memory operands can be determined only after

computing the effective address

Store: M[r1 + disp1] r2

Load: r3 M[r4 + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

12

13

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMUL.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

14

I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 FDIV.D f6, f6, f4

I2 FLD f2, 45(x3)

I3 FMULT.D f0, f2, f4

I4 FDIV.D f8, f6, f2

I5 FSUB.D f10, f0, f6

I6 FADD.D f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6

15

 Latency
I1 FDIV.D f6, f6, f4 4

I2 FLD f2, 45(x3) 1

I3 FMULT.D f0, f2, f4 3

I4 FDIV.D f8, f6, f2 4

I5 FSUB.D f10, f0, f6 1

I6 FADD.D f6, f8, f2 1

in-order comp 1 2

out-of-order comp 1 2

1 2 3 4 3 5 4 6 5 6

2 3 1 4 3 5 5 4 6 6

16

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

Suppose a data structure keeps track of all

the instructions in all the functional units

The following checks need to be made

before the Issue stage can dispatch an

instruction

 Is the required function unit available?

 Is the input data available? RAW?

 Is it safe to write the destination?

WAR? WAW?

 Is there a structural conflict at the WB

stage?

17

18

The instruction i at the Issue stage consults this table

FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

 Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

19

Suppose the instruction is not dispatched by the Issue stage if a
RAW hazard exists or the required FU is busy, and that operands
are latched by functional unit on issue:

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?

NO: Operands read at issue

YES: Out-of-order completion

No WAR hazard

 no need to keep src1 and src2

The Issue stage does not dispatch an instruction in

case of a WAW hazard

a register name can occur at most once in the dest column

WP[reg#] : a bit-vector to record the registers for

which writes are pending

 These bits are set by the Issue stage and cleared by the WB stage

 Each pipeline stage in the FU's must carry the dest field and a flag to

indicate if it is valid “the (we, ws) pair”

20

21

Busy[FU#] : a bit-vector to indicate FU’s availability.
 (FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which writes
are pending.

These bits are set by Issue stage and cleared by WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?

WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

22

I1 FDIV.D f6, f6, f4
I2 FLD f2, 45(x3)
I3 FMULT.D f0, f2, f4
I4 FDIV.D f8, f6, f2
I5 FSUB.D f10, f0, f6
I6 FADD.D f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

 t0 I1 f6 f6

 t1 I2 f2 f6 f6, f2

 t2 f6 f2 f6, f2 I2

 t3 I3 f0 f6 f6, f0

 t4 f0 f6 f6, f0 I1

 t5 I4 f0 f8 f0, f8

 t6 f8 f0 f0, f8 I3

 t7 I5 f10 f8 f8, f10

 t8 f8 f10 f8, f10 I5

 t9 f8 f8 I4

t10 I6 f6 f6

t11 f6 f6 I6

23

 latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

In-order issue restriction prevents
instruction 4 from being dispatched

 Issue stage buffer holds multiple instructions waiting to

issue.

 Decode adds next instruction to buffer if there is space and

the instruction does not cause a WAR or WAW hazard.

 Note: WAR possible again because issue is out-of-order (WAR not

possible with in-order issue and latching of input operands at

functional unit)

 Any instruction in buffer whose RAW hazards are satisfied

can be issued (for now at most one dispatch per cycle). On a

write back (WB), new instructions may get enabled.

24

IF ID WB

ALU Mem

Fadd

Fmul

Issue

25

 latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4, f2, f8 4

6 FADD.D f10, f6, f4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

26

Which features of an ISA limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide any
significant performance improvement!

Number of Registers

27

Floating Point pipelines often cannot be kept filled with
small number of registers.
 IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA compatibility ?

Robert Tomasulo of IBM suggested an ingenious solution
in 1967 using on-the-fly register renaming

28

 latency
1 FLD f2, 34(x2) 1

2 FLD f4, 45(x3) long

3 FMULT.D f6, f4, f2 3

4 FSUB.D f8, f2, f2 1

5 FDIV.D f4’, f2, f8 4

6 FADD.D f10, f6, f4’ 1

1 2

3 4

5

6

Any antidependence can be eliminated by renaming.
 (renaming additional storage)
 Can it be done in hardware? yes!

X

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

 Decode does register renaming and adds instructions to the

issue-stage instruction reorder buffer (ROB)

 renaming makes WAR or WAW hazards impossible

 Any instruction in ROB whose RAW hazards have been

satisfied can be dispatched.

 Out-of-order or dataflow execution

29

IF ID WB

ALU Mem

Fadd

Fmul

Issu
e

30

Renaming
table &
regfile

Reorder
buffer

Load
 Unit

FU FU Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the Decode
stage, which also associates tag with register in regfile
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

31

Instruction slot is candidate for execution when:
• It holds a valid instruction (“use” bit is set)
• It has not already started execution (“exec” bit is clear)
• Both operands are available (p1 and p2 are set)

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 ptr1
next

available

Ins# use exec op p1 src1 p2 src2

Destination registers
are renamed to the
instruction’s slot tag

ROB managed circularly
•“exec” bit is set when instruction begins execution
•When an instruction completes its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

32

• When are tags in sources
 replaced by data?

• When can a name be reused?

1 FLD f2, 34(x2)
2 FLD f4, 45(x3)
3 FMULT.D f6, f4, f2
4 FSUB.D f8, f2, f2
5 FDIV.D f4, f2, f8
6 FADD.D f10, f6, f4

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2
t1
t2
t3

t4

t5

.

.

data / ti

 p data
f1
f2
f3
f4
f5
f6
f7
f8

Whenever an FU produces data

Whenever an instruction completes

t1

 1 1 0 LD

t2

 2 1 0 LD

 5 1 0 DIV 1 v1 0 t4

 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 1 1 1 LD 0

 4 1 1 SUB 1 v1 1 v1 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 1 1 LD 2 0

 3 1 0 MUL 1 v2 1 v1

33

Mult

1

1
2
3
4
5
6

load
buffers
(from
memory)

1
2
3
4

Adder

1
2
3

Floating-Point
Regfile

store buffers
(to memory)

...

instructions

Common bus ensures that data is made available
immediately to all the instructions waiting for it.
Match tag, if equal, copy value & set presence “p”.

Distribute
instruction
templates
by
functional
units

< tag, result >

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data

p tag/data
p tag/data 2

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data

p tag/data
p tag/data
p tag/data
p tag/data

34

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not show
up in the subsequent models until mid-Nineties.
 Why ?
Reasons

1. Effective on a very small class of programs
2. Memory latency a much bigger problem
3. Exceptions not precise!

 One more problem needed to be solved

Control transfers

 These slides contain material developed and copyright by:

 Arvind (MIT)

 Krste Asanovic (MIT/UCB)

 Joel Emer (Intel/MIT)

 James Hoe (CMU)

 John Kubiatowicz (UCB)

 David Patterson (UCB)

 MIT material derived from course 6.823

 UCB material derived from course CS252

35

