Architecture of Computer Systems

Lecture 1 - Introduction

Application

[
What1s Compuger Architecturer

Gap too large to bridge
in one step

(but there are exceptions, e.g.
magnetic compass)

[Physics]

In its broadest definition, computer architecture is the design of
the abstraction layers that allow us to implement information

processing applications efficiently using available manufacturing
—————technologies. B —

Abstraction Layers in Modern Systems

Application

Algorithm

Programming Language

Operating System/Virtual Machines

Instruction Set Architecture (ISA)

Microarchitecture
Gates/Register-Transfer Level (RTL)

-——
7

Circuits

Devices

t Physics

Aphitafottect

suggest how to

chanein

technologles
technology, makl_e ne_W
orovide app |.cl:oe|1t|ons
revenue to DOSE
fund

development

Cost of software development
makes compatibility a major
force in market S

i e R T EENE T N
ml: MEIEE NI REEl g% "" """";;-Em
L — .qgl"':';z._ g

AR L100 00 t'..!"'

1y ' ! i m gaoq

SALSARELL

1}

ul |

L1 RN B | 11 L. ‘ -

URITRT |
: "" l"uuuur 1950890 : g
.
!rvv 12 :
TIIEI T T '
ALY
e TR T e

'k
fors

SIASTY

— EDSAC, University of Cambridge, UK, 1949
T

~ Computing Devices Now

Routers Robo

oV
Automoblles \

Uniprocessor Performance

10000

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

HOOO Lt e

Performance (vs. VAX-11/780)

I R R

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

e VAX : 25%/year 1978 to 1986
* RISC + x86: 52%/year 1986 to 2002

e RISC + x86: ??%/year 2002 to present

Moore’s Law
The Fifth Paradigm Logarithmic Plot

Technology)

. oe
Generations %y CMOS

Bipolare ¢ ¢

. o oMOS
Vacuu % oo’

m .

o
o
o
S
&
—
)
Q
T
C
o}
O
)
w
—
0]
o
(7))
cC
o}
=
b
-
°
O
O

[from Kurzweil]

Electromechanical Relay Vacuum Tube Transistor Integrated Circuit
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

The End of the Uniprocessor Era

Single biggest change in the history of computing

SYstents

ACS Executive Summary

What you’ll understand and el ekl |
experiment with in ACS EEESsnrannus |

AEEEEEEEEEEEE =
EEEEEEEEEENERN
EEEEEEEEEEERN
EEEEEEEEEENER
EEEEEEEEEEERN
EEEEEEEEEENERN
EEEEEEEEEEER
EEEEEEEEEENER
EEEEEEEEEENERN

2

Plus, the technology
behind chip-scale
multiprocessors (CMPs)
and graphics processing
units (GPUs)

10

ACS Administrivia

Lectutes: 20%0

Section: 40% - late for one week 1/3 of total mark
IWS: 40% - CPC 1

Jok Computer Architecture: A Quantitative Approach,

Hennessey and Patterson, 5" Edition (2012)

Readings assigned from this edition, some readings available

in older editions —see web page.

11

ACS Structure and Syllabus

Five modules

1. Simple machine design (ISAs, microprogramming, unpipelined machines,
Iron Law, simple pipelines)

2. Memory hierarchy (DRAM, caches, optimizations) plus virtual memory
systems, exceptions, interrupts

3. Complex pipelining (score-boarding, out-of-order issue)

4. Explicitly parallel processors (vector machines, VLLIW machines,
multithreaded machines)

5. Multiprocessor architectures (memory models, cache coherence,
synchronization)

12

Computer Architecture:
A Lietle Flistoty

Throughout the course we’ll use a historical narrative to help understand why certain ideas arose

Why worry about old ideas?
* Helps to illustrate the design process, and explains why certain decisions were taken
* Because future technologies might be as constrained as older ones

* Those who 1gnore history are doomed to repeat it

Every mistake made in mainframe design was also made in minicomputers, then microcomputers, where next?

13

Charles Babbage 1791-1871

Lucasian Professor of Mathematics,
Cambridge University, 1827-1839

14

Charles Babbage

* Difference Engine 1823

* Analytic Engine 11855

* The forerunner of modern digital computer!

Application
— Mathematical Tables — Astronomy
— Nautical Tables — Navy

Background

— Any continuous function can be approximated by a polynomial -
-- Weierstrass

Technology

— mechanical - gears, Jacquard’s loom, simple calculators

15

Weierstrass:

el ibiEtenCE. Hingine

" Any polynompal faodh FRMRY EG HIR A G (AR a tical tables

An example
t(n)=n"+n + 41
dl(n) = f(n) - f(n-1) =2n
d2(n) =dl(n)-dl(n-1) =2

f(n)= f(n-1) + d1(n) = f(n-1) + (d1(n-1) + 2)

all you need is an adder!

n 0 1 2 3 4
d2(n) 2 2 2
d1(n) 2 4 6 8

fin) | 41 443 147 153 L 61

16

1823

Babbage's paper f)b rence

1834
* The paper is read by Scheutz & his son in
Sweden
1842
* Babbage gives up the idea of building it; he
is onto Analytic Engine!
1855

Scheutz displays his machine at the Paris
World Fare

Can compute any 6th degree polynomial

Speed: 33 to 44 32-digit numbers per minute! I g

3 ;f/

~
S e

-~

[L.
N

i

-

- |

—-!*!

1

.
-:-l
e s g T p—

= '«".—"n—-
-—-,-1.-.-9—.—5
N \

il

— e A s e e e s e A
|‘ 3 " Y .- -

|

Tk

' -

Iy

=

g e mans

?!q v

-

— cm—

s [

LT - e

¢

1833: Babbage’s f \x]?? ?sE ’
* conceved dﬂézﬁgfm ﬁlt;e eve apwgﬂlfg;bgldgémme engine

Inspiration: Jacquard I ooms

* looms were controlled by punched cards

* 'The set of cards with fixed punched holes dictated the pattern of
weave = progran

* The same set of cards could be used with different colored threads
= numbers

1871: Babbage dies

* 'The machine remains unrealized.

It is not clear if the analytic engine could be built

18

using the mechanical technology of the time

A TR MO SRS
[lll'cl_;y L1C Dllglllc
The first conception of a general-purpose computer

The store in which all variables to be operated upon, as well as all those
quantities which have arisen from the results of the operations are

placed.
brought.

The program
Operation variablel variable2 variable3

e T R

An operation in the mill required feeding two punched cards and
producing a new punched card for the store.

An operation to alter the sequence was also provided!

19

Thet

Adag § o

mer
1815-52

Ada’s tutor was Babbage himself!

20

Ba

D

bage’s Influence

* Babbage’s ideas had great influence later primarily

because of

By uigi Menabrea, who Pnb]iched notes of qubqge’c lectures in

Italy

* Lady Lovelace, who translated Menabrea’s notes in English and
thoroughly expanded them.

“... Analytic Engine weaves algebraic patterns....”

* In the early twentieth century - the focus shifted to
analog computers but
* Harvard Mark I built in 1944 is very close in spirit to the Analytic

Engine.

21

AUTOMATIC s E Q

3 e A S
G "
T

NI DI o I o i ANANINI I I IR P RT ZESEBRENPEES .. S B D EE i i, alll B O N R T LR R {‘,]

S02000500CHL
200000
2200000000900¢
00000000000§§!

00566065550
Q2050503000
OO0
25950
JOOOOOOOOﬁOOOf
DIDIODDOD.

T V0 O T 0

Performance'

0.3 seconds for addition

6 seconds for multiplication

1 minute for a sine calculation
Decimal arithmetic
No Conditional Branch!

' Broke down once a week!

S 19307s:
Llne * Atanasoff built the Linear Equation Solver.
* It had 300 tubes!
Jol * Special-purpose binary digital calculator
* Dynamic RAM (stored values on refreshed capacitors)

— Application:
o a: * Linear and Integral differential equations

W Backgronnd:
* Vannevar Bush’s Differential Analyzer
-—- an analog computer

Technology:

* Tubes and Electromechanical relays

Atanasoff decided that the correct mode of computation was

Alacrtranice hincies

23

p=
U.)Illy CICLLI UIIIL MITTur'y Ulyll..)

nslilecttonte-dNamericaldntegratot b
ENIAC (1943-45) at the University of Pennsylvania

The first, C&JI{A 1@1@&2&? L}at@loné@&i@h@)e analytical

calculator!

Application: Ballistic calculations O

angle = f (location, tail wind, cross wind,

* 30 tons, 72 square meters, 200KW
Performance

* Read in 120 cards per minute

* Addition took 200 us, Division 6 ms WW-2 Effort
* 1000 times faster than Mark 1
Not very reliable!
e

24

air density, temperature welght of shell,

propellant charge,)

. Bleetrapictisceete Vasiable Automatic
* Sequences of @Wﬁ@{cu{@@a&[ﬁ@§f the results of the

calculation

* Human intervention required to take instructions “out of order”

* Eckert, Mauchly, John von Neumann and others designed EDVAC
(1944) to solve this problem

* Solution was the stored program computer

=> “program can be manipulated as data”

* First Draft of a report on EDV.AC was published in 1945, but just had

von Neumann’s signature!

* In 1973 the court of Minneapolis attributed the honor of znventing the computer
to John Atanasoff

25

Sregran PASEIRIECH

How to control instruction sequencing?

manual control calculators

<:>:"

P s O §

Jtes
=

auntomatic control
external (paper tape) Harvard Mark I | 1944
Zuse’s Z.1, WW2

internal
Dplug board ENIAC 1946
read-only menory ENIAC 1948

read-write meniory EDVAC 1947 (concept)

* The same storage can be used to store program and data

— —
T W —— R

Technology Issues

ENIAC EDVAC
18,000 tubes 4,000 tubes

20-10-digit numbers 2000 word storage

mercury delay lines

ENIAC had many asynchronous parallel units
but only one was active at a time

BINAC : Two processors that checked each other

for reliability.
Didn’t work well because processors never
agreed

27

Dominant Problem: Re/zability

Mean time between failures (MTBF)
MIT’s Whirlwind with an MTBF of 20 min. was perhaps the
most reliable machine ! s

Reasons for unreliability:

1. Vacuum Tubes

2. Storage medium
acoustic delay lines
mercury delay lines
Williams tubes
Selections

e

Commercial Activity: 1948-52

IBM’s SSEC (follow on from Harvard Mark I)

Selective Sequence Electronic Caleulator

* 150 wotd store.

* Instructions, constraints, and tables of data were read from paper tapes.
® 066 Tape reading stations!

* Tapes could be glued together to form a loop!

* Data could be output in one phase of computation and read in the next phase of
computation.

29

And then there was

IBM 701 -- 30 machines were sold in 1953-54

used CRTs as main memory, 72 tubes of 32x32b each

IBM 650 -- a cheaper, drum based machine,
more than 120 were sold in 1954
and there were orders for 750 more!

Users stopped building their own machines.

Why was IBM late getting into computer
technology?

IBM was making too much money!
Even without computers, IBM revenues were

30

doubling every 4 to 5 years in 40’s and 50’s.

Hardware was expensive

Stores Wegs%mgbbt\%&)ln mld SO,S

—> No resident system software!

Memory access time was 10 to 50 times slower than the
processor cycle

= Instruction execution time was totally dominated by the memory reference
time.

The ability to design complex: control circuits to execute an instruction
was the central design concern as opposed to #he speed of
decoding or an ALLU operation

Programmer’s view of the machine was inseparable from the
actual hardware implementation

31

The IBM 650 (1953-4)

(IPUT QUTPUT
Magnetic Drum (1,000 P
- Active instruction
GEMERAL STORAGE . .
(including next

or 2,000
program counter)

10-digit decimal

words) - '
L FROGRAM REGISTER
= 'I'I“I

DISTRIBUTOR N [vaupmy
| CHECK HEERN

JEERREEEERN

VALIDITY

ONE
"] DiGIT ; CHECK
| ADDER
' R ADD H:_Elt_E_._

J

LOWER ACCUMULATOR |§r~r
Digit-serial

YALICITY UFPFER .lJ.CCfUH'tE,I:-,JF-?DH /1] r
CHECK ™
ALU S

[From 650 Manual, © 1BM]

=

20-digit
"""" accumulator

Programmer’s view ot the IBM 650

A drum machine with 44 instructions

Instruction: 60 1234 1009
e “Load the contents of location 1234 into the distribution; put it

—atsointothe upper accumufator; set fower accumulfatortozero;

and then go to location 1009 for the next instruction.”

ity st LIS S
optimized the placement of S
instructions on the drum to
reduce latency!

33

The Earliest Instruction Sets
Single Accumulator - A carry-over from the calculators.

LOAD X AC Bl M[x]
STORE X M([x] & (AC)
ADD X AC Bl (AC) + M[x]
SUB X
MUL X Involved a quotient register
DIV X
SHIFT LEFT ACR 2 x (AC)
SHIFT RIGHT
JUMP X PC [x
JGE X if (AC) 2 0 then PC @ x
LOAD ADR X AC Bl Extract address field(M[x])
STORE ADR X
] ; > d 5 S i S

R ’ Prom’ammiﬂoz T T T SN
O O

Single Accumulator Machine

|

|

|

\ Qe
‘ _ A A..—‘. A;:—W"
| PRI e
| e lebaa!
! R
| i

LOOP LOAD N B
JGE DONE
ADD ONE
STORE N C
F1 LOAD A
F2 ADD B
F3 STORE C N
JUMP LOOP ONE
DONE HLT

code |

How to modify the addresses A, B and C ?

Self-Modifying Code

JGE DONE
ADD ONE
T
STORE & Each iteration involves
Fi LOAD A | book
F2 ADD B i koo :
F3 STORE C - - e
Instruction
fetches 17 14
modify the gperang
program fetches 10 8
for the next
iteration stores 5 4
JUMP LOOP -

Y DT W D ST RS
IMacx RNCLISTCYS
Tom Kilburn, Manchester University, mid 50%

One or more specialized registers to simplify
address calculation

Modify existing instructions
LOAD X, IX AC « M[x + (IX)]
ADD Xy X AC « (AC) + M[x + (IX)]

Add new instructions to manipulate index registers

JZi X, IX if (IX)=0 then PC « X
else IX « (IX) +1
LOAD:I X, IX IX « M[x] (truncated to fit IX)

Index registers have accumulator-like
characteristics

37

Using Index Registers
CeA+B, 1s<isn

LOADi -n, IX A
LOOP JZi DONE, IX

LOAD LASTA, IX

ADD LASTB, IX

STORE LASTC, IX

JUMP LOOP LASTA
DONE HALT

e Program does not modify itself

o Efficiency has improved dramatically (ops / iter)
with index regs

instruction fetch o5(2)
operand fetch 2
store 1
e Costs: Instructions are 1 to 2 bits longer

Index registers W|th ALU Ilke C|rCU|trv

38

Complex control -

Operations on Index Registers

To increment index register by k

AC « (IX) new instruction
AC « (AC) + k

IV . (AC) Nnaoiaz Inclrriiction
2 7 0 T S HEW—TrotaCeroOrH

Nt

also the AC must be saved and restored.

It may be better to increment IX directly
INCi ket D (1) ok

More instructions to manipulate index register
STOREI X, IX M[x] « (IX) (extended to fit a word)

IX begins to look like an accumulator
— several index registers
several accumulators 5

— General Purpose Registers—

Evolution ot Addressing Modes

1. Single accumulator, absolute address

BOATD S |
2. Single accumulator, index registers
LOAD b x B
3. Indirection
LOAD (%)

4. Multiple accumulators, index registers, indirection
LOAD R, IX, x
or AR R Be G

5. Indirect through registers
LOAD R, (R)
6. The works
LOAD Ry, Rj, Rg) R, = index, Ry = base addr

40

Variety of Instruction Formats

* One address formats: Accumulator machines
* Accumulator is always other source and destination operand

° Two m/dwrcﬁ)rmafr' the destination is same as one of the npemﬂd

sources

(Reg x Reg) to Reg R < Ry + Ry
(Reg x Mem) to Reg R e =uRE Vi

* xcan be specified directly or via a register

* effective address calculation for x could include indexing, indirection, ...

* Three address formats: One destination and up to two operand
sources per instruction

(Reg x Reg) to Reg R; « (RJ) + Ry)

41

(Reg X Mem) to Reg Ry <= (Rj) F M[x]

Z.ero Address Formats

* Operands on a stack

* Stack can be in registers or in memory (usually top of stack cached in

registers)
Register
A
SP -
B
C

42

—R11 13 , —R:nnn S‘I—nf*]r AVI*L
N B 4

14 \11O" 1
UL1U) L«Léll S B D AT AW AN U RN e LA O I
An ALGOL Machine, Robert Barton, 1960

Machine implementation can be completely hidden if the programmer is provided only a high-level language
interface.

Stack machine organization because stacks are convenient for:
1. expression evaluation;
2. subroutine calls, recursion, nested interrupts;

3. accessing variables in block-structured languages.

B6700, a later model, had many more innovative features
* tagged data
® virtual memory

* multiple processors and memories

43

Evaluation ot Expressions

(a+b*c)

LAk d Tt cse)

S0

Reverse Po
abc

HEIL

ish
+adc+e-/

Evaluation Stack .

‘Pphstsbldply

i

Evaluation ot Expressions

(@b *tec)/(atdrc=-e)

)

Reverse Polish —@<_

abc*4+adc*+e-/ _
Evaluation Stack .

= Ve e A S R N T e e
av

Hardware organization of the stack

* Stack 1s part of the processor state

~ number of Registers,

not the size of main memory

* Conceptually stack 1s unbounded
=L a part of the stack is included in the
Drocessor state; the rest is kept in the
1ain. 7m1em0ory

46

Stack Operations and

Implicit Memory References

* Suppose the top 2 elements of the stack are kept in
registers and the rest is kept in the memory.

Bach push operation= 1 memory reference

pop operation= 1 memory reference

No Good!

* Better performance by keeping the top N elements in
el YOSEERS B

registers, and memory references are made only when
register stack overflows or underflows.

Lssue - when to 1oad/ Unload registers ?

47

Stack Size and Memory References

program stack (size = 2) memory refs
nuch RO ~

push a RO a

push b RO R1 b

push c RO R1 R2 c, ss(a)

% RO R1 sf(a)

+ RO

push a RO R1 a

push d RO R1 R2 d, ss(a+b*c)
push ¢ RO R1 R2 R3 c, ss(a)

& RO R1 R2 sf(a)

+ RO R1 sf(a+b*c)
push e RO R1 R2 e,ss(a+b*c)
- RO R1 sf(a+b*c)

/ RO

48
—stores;fetCres—(rMOliCiy——

Stack Size and Expression Evaluation

program stack (size = 4)
pusia — RO
push b RO R1
2 dndcare push ¢ — RO R1 R2
“loaded” twice & RO R1
ek RO
not the best push a RO R1
use of registers! ~ Push d ROR1R2
push ¢ — RO R1 R2 R3
& RO R1 R2
+ RO R1
push e RO R1 R2
- RO R1

49

/ RO

Register Usage in a GPR Machine
(a+b*o/(a+d*c-e)

More control over register usage

Load RO a since registers can be named
[logd RT T explicitly
Load R2 b

SRR Mal ko R o Do
Add e R RO Load Ri (Rj)

Reuse L0ad R3 d Load Ri (Rj) (Rk)
Add R3 RO

Reuse Load RO e - eliminates unnecessary

RO Sub R3 RO Loads and Stores

Div R2 R3 - fewer Registers

but instructions may be longer!

50

Stack Machines: Essential features

* In addition to push, pop, +
etc., the instruction set must

refer to any element in the data area

Jump to any instruction in the code stack

area /—\
PR

move any element in the stack frame
to the top

_U
@)
§®)
C
n
)7
o
oo

©
722
n
=y
@]
@]

push e data

code .

1 dtackaretsus Lol2Roliganization.
from the presence of, fast /)r%zi;}%; %}]dg}%étbg ¥y they are used.

2.“Surfacing” of data in stack which are “profitable” is approximately 50%

because of constants and common subexpressions.

3. Advantage of instruction density because of implicit addresses 1s
equaled if short addresses to specify registers are allowed.

4. Management of finite depth stack causes complexity.

5. Recursive subroutine advantage can be realized only with the help of an
independent stack for addressing.

6. Fitting variable-length fields into fixed-width word is awkward.

52

Stack Machines wowy Died by 1980

1. Stack programs are not smaller if short (Register) addresses are
permitted.

2. Modern compilers can manage fast register space better than the
stack discipline.

GPR’s and caches are better than stack and displays

Early language-directed architectures often did not
take into account the role of compilers!

B5000, B6700, HP 3000, ICL 2900, Symbolics 3600

Some would claim that an echo of this mistake is
visible in the SPARC architecture register wmdows - 53
——— more-later... , .

Stacks post-1980

Inmos Transputers (1985-2000) |

* Designed to support many parallel processes in Occam language |

* TFixed-height stack design simplified implementation

¥ Stack trashed on context swap (fast context switches)

* Inmos T800 was world’s fastest microprocessor in late 80’

Forth machines

* Direct support for Forth execution in small embedded real-time environments

* Several manufacturers (Rockwell, Patriot Scientific)

Java Virtual Machine
* Designed for software emulation, not direct hardware execution

®* Sun Picolava implementation + others
p

Intel x87 floating-point unit

* Severely broken stack model for FP arithmetic

Software Developments

up to 1955 Libraries of numerical routines

- Floating point operations
- Trang,cendental fgnctions

Matrix-manipttation;equation-selvers;,————
rFracti i I]

1955-60 High level Languages - Fortran 1956
Operating Systems -
- Assemblers, Loaders, Linkers, Compilers

- Accounting programs to keep track of
usage and charges

Machines required experienced operators

= Most users could not be expected to understand
these programs, much less write them

— Machines had to be sold with a lot of resident

(A~ A IR A A~} |

55

Compatibility Problem at IBM

By early 60’s, IBM had 4 incompatible lines of
computers!

/01 > /7094
650 o /074
/702 > /7080
1401 —» 00 7010

Each system had its own
e Instruction set
e I/O system and Secondary Storage:
magnetic tapes, drums and disks
e assemblers, compilers, libraries,...
e market niche
business, scientific, real time, ...

56

= IBM 360

IBM 360 Design Premises

Amdahl, Blaauw and Brooks, 1964

* The design must lend itself to growth and successor machines

* General method for connecting I/O devices

* Total performance - answers per month rather than bits per
microsecond => programming aids

* Machine must be capable of supervising itself without manual
intervention

* Built-in hardware fanlt checking and locating aids to reduce down time

* Simple to assemble systems with redundant I/O devices, memories etc.

tor fault tolerance

* Some problems required floating-point larger than 36 bits

57

IBM 3060: A General-Purpose Register (GPR)

N6 General—Purpose Mgﬁéi 72€

@SS Sk ,I pe:
(4/ (/l«

wy-be-msed-as+
* Register O has some special properties

* 4 Floating Point 64-bit Registers

* A Program Status Word (PSW)
* PC, Condition codes, Control flags

* A 32-bit machine with 24-bit addresses

* But no instruction contains a 24-bit address!

* Data Formats

* 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words
The IBM 360 is y//?)/ @/z‘es are 8-bits /mg today!

58

IBM 360: Initial Implementations

Model 30 ... Model 70
Storage 8K - 64 KB 256K -512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store Main Store Transistor Registers
Control Store Read only 1BIsec Conventional circuits

IBM 360 instruction set architecture (ISA) completely hid the
underlying technological differences between various models.

Milestone: The first true ISA designed as portable hardware-
software interface!

With minor modific tions it still survives todav! 3

IBM 360: 47 years later...

The zSeries z11 Microprocessor

* 5.2 GHz in IBM 45nm PD-SOI CMOS technology
* 1.4 billion transistors in 512 mm?

* 064-bit virtual addressing

* original S/360 was 24-bit, and S/370 was 31-bit extension
* Quad-core design

L3_0 Controller * Three-issue out-of-order superscalar pipeline

L3_1 Controller

* Out-of-order memory accesses

* Redundant datapaths

° every instruction performed in two parallel datapaths and results
compared

64KB L1 I-cache, 128KB L1 D-cache on-chip

1.5MB private L2 unified cache per core, on-chip
[IBM, HotChips, 2010]

On-Chip 24MB eDRAM L3 cache

Scales to 96-core multiprocessor with 768MB of shared
L4 eDRAM &

And n conclusion .
* Computer Architecture >> ISAs and RTL

*ACS is about interaction of hardware and software, and
design of appropriate abstraction layers

. * Computer architecture 1s shaped by technology and
applications

* History provides lessons for the future

* Computer Science at the crossroads from sequential to
parallel computing

* Salvation requires innovation in many fields, including computer
architecture

61

S S £ T2 B (R ST 7 A . A SRR RV YAV A W TAT AT A T AT e

Acknowledgements

* These slides contain material developed and copyright by:
* Arvind (MIT)
* Kirste Asanovic MIT/UCB)
* Joel Emer (Intel/MIT)
* James Hoe (CMU)
* John Kubiatowicz (UCB)
* David Patterson (UCB)

* MIT material derived from course 6.823

* UCB material dertved from course CS252

62

