
Architecture of  Computer Systems 

 

 Lecture 1 - Introduction  

 



What is Computer Architecture? 
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Application 

Physics 

Gap too large to bridge 
in one step 

In its broadest definition, computer architecture is the design of 
the abstraction layers that allow us to implement information 
processing applications efficiently using available manufacturing 
technologies. 

(but there are exceptions, e.g. 
magnetic compass) 



Abstraction Layers in Modern Systems 
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Algorithm 

Gates/Register-Transfer Level (RTL) 

Application 

Instruction Set Architecture (ISA) 

Operating System/Virtual Machines 

Microarchitecture 

Devices 

Programming Language 

Circuits 

Physics 



Cost of software development 
makes compatibility a major 
force in market 

Architecture continually changing 
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Applications 

Technology 

Applications 
suggest how to 
improve 
technology, 
provide 
revenue to 
fund 
development 

Improved 
technologies 
make new 
applications 
possible 



Computing Devices Then… 

EDSAC, University of  Cambridge, UK, 1949 
5 



Computing Devices Now 
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Robots 

Supercomputers 
Automobiles 

Laptops 

Set-top 
boxes 

Smart 
phones 

Servers 

Media 
Players 

Sensor Nets 

Routers 

Cameras 
Games 



Uniprocessor Performance 

1
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• VAX         : 25%/year 1978 to 1986 
• RISC + x86: 52%/year 1986 to 2002 
• RISC + x86: ??%/year 2002 to present 

From Hennessy and Patterson, Computer 
Architecture: A Quantitative Approach, 4th 
edition, October, 2006 
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[from Kurzweil] 
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The End of  the Uniprocessor Era 

Single biggest change in the history of  computing 

systems 

9 



ACS Executive Summary 
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Plus, the technology 
behind chip-scale 
multiprocessors (CMPs) 
and graphics processing 
units (GPUs) 

What you’ll understand and 
experiment with in ACS 



ACS Administrivia 

Lectures: 20% 

Section: 40% - late for one week 1/3 of  total mark. 

IWS: 40% - CPC 1 

Text: Computer Architecture: A Quantitative Approach, 

 Hennessey and Patterson, 5th Edition (2012) 

 Readings assigned from this edition, some readings available 
in older editions –see web page. 
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ACS Structure and Syllabus 

Five modules 

1. Simple machine design (ISAs, microprogramming, unpipelined machines, 

Iron Law, simple pipelines) 

2. Memory hierarchy (DRAM, caches, optimizations) plus virtual memory 

systems, exceptions, interrupts 

3. Complex pipelining (score-boarding, out-of-order issue) 

4. Explicitly parallel processors (vector machines, VLIW machines, 

multithreaded machines) 

5. Multiprocessor architectures (memory models, cache coherence, 

synchronization) 
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Computer Architecture: 

 A Little History 

Throughout the course we’ll use a historical narrative to help understand why certain ideas arose 

 

 

Why worry about old ideas? 

• Helps to illustrate the design process, and explains why certain decisions were taken 

• Because future technologies might be as constrained as older ones 

• Those who ignore history are doomed to repeat it 

• Every mistake made in mainframe design was also made in minicomputers, then microcomputers, where next? 
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Charles Babbage 1791-1871 
Lucasian Professor of  Mathematics,  

Cambridge University, 1827-1839 
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Charles Babbage 
• Difference Engine      1823 
 
• Analytic Engine         1833 

• The forerunner of  modern digital computer! 
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Application 
– Mathematical Tables – Astronomy 
– Nautical Tables – Navy 

 

Background  
– Any continuous function can be approximated by a polynomial -

--    Weierstrass  
 

Technology 
– mechanical - gears, Jacquard’s loom, simple calculators 

 



Difference Engine 
A machine to compute mathematical tables 

Weierstrass: 

• Any continuous function can be approximated by a polynomial 

• Any polynomial can be computed from difference tables 

An example 

f(n) = n2 + n + 41 

d1(n) = f(n) - f(n-1) = 2n 

d2(n) = d1(n) - d1(n-1) = 2 

 

f(n) = f(n-1) + d1(n) = f(n-1) + (d1(n-1) + 2) 
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all you need is an adder! 

n 

d2(n) 

d1(n) 

f(n) 

0 

  

41 
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4 6 8 

43 47 53 61 



Difference Engine 
1823 

• Babbage’s paper is published 

 

1834 

• The paper is read by Scheutz & his son in 
Sweden 

 

1842  

• Babbage gives up the idea of  building it; he 
is onto Analytic Engine! 

 

1855 

• Scheutz displays his machine at the Paris 
World Fare 

• Can compute any 6th degree polynomial 

• Speed:  33 to 44  32-digit numbers per minute! 
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Now the machine is at the Smithsonian 



Analytic Engine 1833: Babbage’s paper was published 
• conceived during a hiatus in the development of  the difference engine 

 

Inspiration: Jacquard Looms 
• looms were controlled by punched cards 

• The set of  cards with fixed  punched holes dictated the pattern of  
weave    program 

 

• The same set of  cards could be used with different colored threads 
  numbers 

 

1871: Babbage dies 
• The machine remains unrealized. 
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It is not clear if the analytic engine could be built 
using the mechanical technology of the time 



Analytic Engine 
The first conception of  a general-purpose computer 

1. The store in which all variables to be operated upon, as well as all those 

quantities which have arisen from the results of  the operations are 

placed. 

2. The mill into which the quantities about to be operated upon are always 

brought. 
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The program 
     Operation    variable1    variable2    variable3 
 
 
 
 
An operation in the mill  required feeding two punched cards and 
producing a new punched card for the store. 
 
An operation to alter the sequence was also provided! 
 



The first programmer  
Ada Byron aka  “Lady Lovelace”  1815-52 
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Ada’s tutor was Babbage himself! 



Babbage’s Influence 

• Babbage’s ideas had great influence later primarily 
because of 

• Luigi Menabrea, who published notes of  Babbage’s  lectures in 
Italy 

• Lady Lovelace, who translated Menabrea’s notes in English and 
thoroughly expanded them. 

“... Analytic Engine weaves algebraic patterns....”  

 
    

• In the early twentieth century - the focus shifted to 
analog computers but 

• Harvard Mark I built in 1944 is very close in spirit to the Analytic 
Engine.    

21 



Harvard Mark I •Built in 1944 in IBM Endicott laboratories 
• Howard Aiken – Professor of  Physics at Harvard 

• Essentially mechanical but had some electro-magnetically controlled 

relays and gears 

• Weighed 5 tons and had 750,000 components 

• A synchronizing clock that beat every 0.015 seconds (66Hz) 

22 

Performance: 
      0.3 seconds for addition 
        6    seconds for multiplication 
        1    minute for a sine calculation 
Decimal arithmetic 
No Conditional Branch! 

Broke down once a week! 



Linear Equation Solver 
John Atanasoff, Iowa State University 

1930’s:  
• Atanasoff  built the Linear Equation Solver.  
• It had 300 tubes!  
• Special-purpose binary digital calculator 
• Dynamic RAM (stored values on refreshed capacitors) 

 
Application: 

• Linear and Integral differential equations 
 
Background: 

• Vannevar Bush’s Differential Analyzer 
   --- an analog computer 
 

Technology: 
• Tubes and Electromechanical relays 

23 
Atanasoff decided that the correct mode of computation was 
using electronic binary digits. 



Electronic Numerical Integrator 

and Computer (ENIAC) 

• Inspired by Atanasoff  and Berry, Eckert and Mauchly designed and built 
ENIAC (1943-45) at the University of  Pennsylvania 

• The first, completely electronic, operational, general-purpose analytical 
calculator! 

• 30 tons, 72 square meters, 200KW 

• Performance 

• Read in 120 cards per minute 

• Addition took 200 ms, Division 6 ms 

• 1000 times faster than Mark I 

• Not very reliable! 
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Application: Ballistic calculations 
 
angle = f (location, tail wind, cross wind,   
               air density, temperature, weight of shell, 
               propellant charge, ... ) 

WW-2 Effort 



Electronic Discrete Variable Automatic 

Computer (EDVAC) 
• ENIAC’s programming system was external 

• Sequences of  instructions were executed independently of  the results of  the 
calculation 

• Human intervention required to take instructions “out of  order” 

• Eckert, Mauchly, John von Neumann and others designed EDVAC 
(1944) to solve this problem 

• Solution was the stored program computer 

   “program can be manipulated as data” 

• First Draft of  a report on EDVAC was published in 1945, but just had 
von Neumann’s signature! 

• In 1973 the court of  Minneapolis attributed the honor of  inventing the computer 
to John Atanasoff 
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Stored Program Computer 

manual control    calculators 

 

automatic control 

external (paper tape)  Harvard Mark I , 1944 

      Zuse’s Z1, WW2 

internal  

plug  board   ENIAC     1946 

read-only memory  ENIAC     1948 

read-write memory  EDVAC    1947 (concept ) 

 

• The same storage can be used to store program and data 
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Program = A sequence of instructions 

How to control instruction sequencing? 

 EDSAC         1950          Maurice Wilkes 



Technology Issues 
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ENIAC   EDVAC 
18,000  tubes   4,000 tubes 
20  10-digit numbers  2000 word storage 
    mercury delay lines 
 
ENIAC had many asynchronous parallel units 
but only one was active at a time 

BINAC : Two processors that checked each other 
for reliability.  

 Didn’t work well because processors never  
 agreed 



Dominant Problem: Reliability 

28 

 Mean time between failures  (MTBF)  
MIT’s Whirlwind with an MTBF of 20 min. was perhaps the 
most reliable machine ! 

 
Reasons for unreliability: 
 
     1. Vacuum Tubes 
      2. Storage medium 

        acoustic delay lines 
        mercury delay lines 
        Williams tubes 
        Selections 

Reliability solved by invention of Core memory by          
J. Forrester 1954 at MIT for Whirlwind project 



Commercial Activity: 1948-52 

IBM’s SSEC (follow on from Harvard Mark I) 

 
Selective Sequence Electronic Calculator 

 
• 150 word store. 

• Instructions, constraints, and tables of  data were read from paper tapes. 

• 66 Tape reading stations! 

• Tapes could be glued together to form a loop! 

• Data could be output in one phase of  computation and read in the next phase of  
computation. 

29 



And then there was IBM 701 

30 

IBM 701 -- 30 machines were sold in 1953-54 
 used CRTs as main memory, 72 tubes of 32x32b each 

 
IBM 650  -- a cheaper, drum based machine, 
                  more than 120 were sold in 1954 
                  and there were orders for 750 more! 

Users stopped building their own machines. 

Why was IBM late getting into computer 
technology? 

IBM was making too much money! 
Even without computers, IBM revenues were 
doubling every 4 to 5 years in 40’s and 50’s. 



Computers in mid 50’s 
• Hardware was expensive 

• Stores were small (1000 words) 

 No resident system software!   

• Memory access time was 10 to 50 times slower than the 
processor cycle 

 Instruction execution time was totally dominated by the memory reference 
time. 

• The ability to design complex control circuits to execute an instruction 
was the central design concern as opposed to the speed of  
decoding or an ALU operation  

• Programmer’s view of  the machine was inseparable from the 
actual hardware implementation  

31 



The IBM 650 (1953-4) 

32 

[From 650 Manual, © IBM] 

Magnetic Drum (1,000 
or 2,000 

10-digit decimal 
words) 

20-digit 
accumulator 

Active instruction 
(including next 

program counter) 

Digit-serial 
ALU 



Programmer’s view of  the IBM 650 
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A drum machine with 44 instructions 
 
Instruction:      60 1234 1009 

• “Load the contents of location 1234 into the distribution; put it 
also into the upper accumulator; set lower accumulator to zero; 
and then go to location 1009 for the next instruction.” 

 

Good programmers 
optimized the placement of 
instructions on the drum to 
reduce latency! 



The Earliest Instruction Sets 
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Single Accumulator  - A carry-over from the calculators. 
LOAD  x  AC  M[x] 
STORE  x  M[x]  (AC) 
 
ADD  x  AC  (AC) + M[x] 
SUB  x 
 
MUL  x  Involved a quotient register 
DIV  x 
 
SHIFT LEFT   AC  2  (AC) 
SHIFT RIGHT 
 
JUMP  x  PC  x 
JGE  x  if (AC) ³ 0 then PC  x 
 
LOAD ADR  x  AC  Extract address field(M[x]) 
STORE ADR x 

Typically less than 2 dozen instructions! 



Programming:  

Single Accumulator Machine 
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LOOP LOAD  N 
JGE  DONE 
ADD  ONE 
STORE  N 

F1 LOAD  A 
F2 ADD  B 
F3 STORE  C 

JUMP  LOOP 
DONE HLT 

Ci   Ai + Bi,   1  i  n 

How to modify the addresses A, B and C ? 

A 

 

 
B 

 

 

C 

 

 

N 

ONE 

 

 

code 

-n 

1 



Self-Modifying Code 
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LOOP LOAD  N 
JGE  DONE 
ADD  ONE 
STORE  N 

F1 LOAD  A 
F2 ADD  B 
F3 STORE  C 

JUMP  LOOP 
DONE HLT 

modify the 
program 
for the next 
iteration 

Each iteration involves 
                    total   book- 
                             keeping 
instruction 
fetches     
 
operand  
fetches     
 
stores       

Ci   Ai + Bi,   1  i  n 

LOAD ADR F1 
ADD  ONE 
STORE ADR F1 
LOAD ADR F2 
ADD  ONE 
STORE ADR F2 
LOAD ADR F3 
ADD  ONE 
STORE ADR F3 
JUMP  LOOP 

DONE HLT 

17 
 
 

10 
 
5 

14 
 
 
8 
 
4 



Index Registers 
Tom Kilburn, Manchester University, mid 50’s 
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Modify existing instructions 
LOAD x, IX  AC   M[x + (IX)] 
ADD x, IX  AC   (AC) + M[x + (IX)] 
... 
 

Add new instructions to manipulate index registers 
JZi  x, IX  if (IX)=0 then  PC   x 
                  else   IX   (IX) + 1 
LOADi x, IX  IX   M[x]   (truncated to fit IX) 
... 

One or more specialized registers to simplify 
address calculation 

Index registers have accumulator-like 
characteristics 



Using Index Registers 
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 LOADi -n, IX 
LOOP JZi DONE, IX 

LOAD  LASTA, IX 
ADD  LASTB, IX 
STORE  LASTC, IX 
JUMP  LOOP 

DONE HALT 

• Program does not modify itself 
• Efficiency has improved dramatically (ops / iter) 
       with index regs without index regs       

instruction fetch    17 (14) 
operand fetch    10 (8) 
store       5 (4) 

• Costs: Instructions are 1 to 2 bits longer 

Index registers with ALU-like circuitry  
Complex control 

A 

LASTA 

Ci   Ai + Bi,   1  i  n 

5(2) 
2 
1 



Operations on Index Registers 
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To increment index register by k 
AC  (IX)  new instruction 
AC  (AC) + k 
IX   (AC)  new instruction 

also the AC must be saved and restored. 
 

It may be better to increment IX directly  
INCi  k, IX   IX  (IX) + k 

 

More instructions to manipulate index register 
STOREi  x, IX  M[x]  (IX) (extended to fit a word) 

... 

IX begins to look like an accumulator 
  several index registers 

several accumulators 
  General Purpose Registers 



Evolution of  Addressing Modes 
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1. Single accumulator, absolute address 
LOAD x 

2. Single accumulator, index registers 
LOAD x, IX 

3. Indirection 
LOAD (x) 

4. Multiple accumulators, index registers, indirection 

LOAD R, IX, x       

or LOAD R, IX, (x)  the meaning? 

        R  M[M[x] + (IX)]   

    or R  M[M[x + (IX)]]  

5. Indirect through registers 
LOAD RI, (RJ) 

6. The works 
LOAD RI, RJ, (RK)          RJ = index, RK = base addr 



Variety of  Instruction Formats 
• One address formats: Accumulator machines 

• Accumulator is always other source and destination operand 

 

• Two address formats: the destination is same as one of  the operand 
sources 

 

 (Reg  Reg)  to Reg  RI    (RI)  + (RJ) 

 (Reg  Mem) to Reg  RI     (RI)  + M[x] 

  

• x can be specified directly or via a register 

• effective address calculation for x could include indexing, indirection, ... 

 

• Three address formats: One destination and up to two operand 
sources per instruction 

 

 (Reg x Reg)  to Reg  RI    (RJ)  + (RK) 

 (Reg x Mem) to Reg  RI    (RJ)  + M[x] 
41 



Zero Address Formats 

• Operands on a stack 

 

 add  M[sp-1]   M[sp] + M[sp-1]  

 load M[sp]   M[M[sp]] 

  

• Stack can be in registers or in memory (usually top of  stack cached in 

registers) 
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C 

B 

A 
SP 

Register 



Burrough’s B5000 Stack Architecture:  
An ALGOL Machine, Robert Barton, 1960 

• Machine implementation can be completely hidden if  the programmer is provided only a high-level language 
interface.  

                                                  

• Stack machine organization because stacks are convenient for: 

1. expression evaluation; 

2. subroutine calls, recursion, nested interrupts; 

3. accessing variables in block-structured languages. 

 

• B6700, a later model, had many more innovative features 

• tagged data 

• virtual memory 

• multiple processors and memories 

 

43 



Evaluation of  Expressions 
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a 

b 

c 

(a + b * c) / (a + d * c - e) 

/ 

+ 

* + a e 

- 

a c 

d c 

* 
b 

Reverse Polish 
 a b c * + a d c * + e - / 

push a push b push c multiply 

* 

Evaluation Stack 

b * c 



Evaluation of  Expressions 
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a 

(a + b * c) / (a + d * c - e) 

/ 

+ 

* + a e 

- 

a c 

d c 

* 
b 

Reverse Polish 
 a b c * + a d c * + e - / 

add 

+ 

Evaluation Stack 

b * c 

a + b * c 



Hardware organization of  the stack 

• Stack is part of  the processor state 

  stack must be bounded and small 

      number of  Registers, 

        not the size of  main memory 

 

•  Conceptually stack is unbounded 

 a part of  the stack is included in the  

     processor state; the rest is kept in the 

     main memory 

 46 



Stack Operations and 

Implicit Memory References 

• Suppose the top 2 elements of  the stack are kept in 
registers and the rest is kept in the memory. 

 

Each push  operation 1 memory reference 

         pop  operation  1 memory reference 

                                               No Good! 

 

• Better performance by keeping the top N elements in 
registers, and memory references are made only when 
register stack overflows or underflows. 

 

         Issue - when to Load/Unload registers ? 

 
47 



Stack Size and Memory References 
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program stack (size = 2) memory refs 
push a  R0   a 
push b  R0 R1   b 
push c  R0 R1 R2  c, ss(a) 
*  R0 R1   sf(a) 
+  R0 
push a  R0 R1   a   
push d  R0 R1 R2  d, ss(a+b*c) 
push c  R0 R1 R2 R3  c, ss(a) 
*  R0 R1 R2  sf(a) 
+  R0 R1   sf(a+b*c) 
push e  R0 R1 R2  e,ss(a+b*c) 
-  R0 R1   sf(a+b*c) 
/  R0  

a b c * + a d c * + e - / 

4  stores, 4 fetches (implicit) 



Stack Size and Expression Evaluation 

49 

program stack (size = 4)  
push a  R0 
push b  R0 R1  
push c  R0 R1 R2 
*  R0 R1  
+  R0 
push a  R0 R1    
push d  R0 R1 R2 
push c  R0 R1 R2 R3 
*  R0 R1 R2 
+  R0 R1  
push e  R0 R1 R2 
-  R0 R1  
/  R0  

a b c * + a d c * + e - / 

a and c are 
“loaded” twice 

 
not the best 
use of registers! 



Register Usage in a GPR Machine 
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More control over register usage 
since registers can be named 
explicitly 
 

Load Ri m 
Load Ri (Rj) 
Load Ri (Rj) (Rk) 

  
- eliminates unnecessary  

   Loads and Stores 
- fewer Registers 

 
but instructions may be longer! 

Load R0 a 
Load R1 c 
Load R2 b 
Mul R2 R1 

(a + b * c) / (a + d * c - e) 

Reuse  
R2 

Add R2 R0 
Load R3 d 
Mul R3 R1 
Add R3 R0 

Reuse  
R3 

Load R0 e 
Sub R3 R0 
Div R2 R3 

Reuse  
R0 



Stack Machines: Essential features 

• In addition to push, pop, + 

etc., the instruction set must 

provide the capability to 

• refer to any element in the data area 

• jump to any instruction in the code 

area 

• move any element in the stack frame 

to the top 
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machinery to 
carry out 
+, -, etc. 

stack 
SP 

DP 

 PC 

data 

. 

. 

. 

a 
b 
c 
 

 

push a 
push b 
push c 
* 
+ 
push e 
/ 

code 



Stack versus GPR Organization 
Amdahl, Blaauw and Brooks, 1964 

1. The performance advantage of  push down stack organization is derived 

from the presence of  fast registers and not the way they are used. 

2.“Surfacing” of  data in stack which are “profitable” is approximately 50% 

because of  constants and common subexpressions. 

3. Advantage of  instruction density because of  implicit addresses is 

equaled if  short addresses to specify registers are allowed. 

4. Management of  finite depth stack causes complexity. 

5. Recursive subroutine advantage can be realized only with the help of  an 

independent stack for addressing. 

6. Fitting variable-length fields into fixed-width word is awkward. 
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Stack Machines (Mostly) Died by 1980 

1. Stack programs are not smaller if  short (Register) addresses are 
permitted. 

 

2. Modern compilers can manage fast register space better than the 
stack discipline. 

53 

GPR’s and caches are better than stack and displays 

Early language-directed architectures often did not 
take into account the role of compilers!  
 
 B5000, B6700, HP 3000, ICL 2900, Symbolics 3600 

Some would claim that an echo of this mistake is 
visible in the SPARC architecture register windows - 
more later… 



Stacks post-1980 
•  Inmos Transputers (1985-2000) 

• Designed to support many parallel processes in Occam language 

• Fixed-height stack design simplified implementation 

• Stack trashed on context swap (fast context switches) 

• Inmos T800 was world’s fastest microprocessor in late 80’s 

•  Forth machines 

• Direct support for Forth execution in small embedded real-time environments 

• Several manufacturers (Rockwell, Patriot Scientific) 

•  Java Virtual Machine 

• Designed for software emulation, not direct hardware execution 

• Sun PicoJava implementation + others 

•  Intel x87 floating-point unit 

• Severely broken stack model for FP arithmetic 

• Deprecated in Pentium-4, replaced with SSE2 FP registers 
54 



Software Developments 
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up to 1955 Libraries of numerical routines 
   - Floating point operations 
    - Transcendental functions 
    - Matrix manipulation, equation solvers, . . . 
 

1955-60 High level Languages - Fortran 1956 

Operating Systems -    
   - Assemblers, Loaders, Linkers, Compilers 

   - Accounting programs to keep track of  
      usage and charges 

 Machines required experienced operators  
       Most users could not be expected to understand 
           these programs, much less write them 

 
 Machines had to be sold with a lot of resident 

software 



Compatibility Problem at IBM 
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By early 60’s, IBM had 4 incompatible lines of 
computers! 

701  7094 
650   7074 
702   7080 
1401   7010 

 

Each system had its own 
• Instruction set 
• I/O system and Secondary Storage:  
    magnetic tapes, drums and disks 
• assemblers, compilers, libraries,... 
• market niche 
  business, scientific, real time, ... 

 IBM 360 



IBM 360 : Design Premises  
Amdahl, Blaauw and Brooks, 1964 

• The design must lend itself  to growth and successor machines 

• General method for connecting I/O devices 

• Total performance - answers per month rather than bits per 
microsecond  programming aids 

• Machine must be capable of  supervising itself  without manual 
intervention 

• Built-in hardware fault checking and locating aids to reduce down time 

• Simple to assemble systems with redundant I/O devices, memories etc. 
for fault tolerance 

• Some problems required floating-point larger than 36 bits 
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IBM 360: A General-Purpose Register (GPR) 

Machine 
• Processor State 

• 16 General-Purpose 32-bit Registers 

• may be used as index and base register 

• Register 0 has some special properties  

• 4 Floating Point 64-bit Registers 

• A Program Status Word (PSW)  

• PC, Condition codes, Control flags 

•  A 32-bit machine with 24-bit addresses 

• But no instruction contains a 24-bit address! 

•  Data Formats 

• 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words 
58 The IBM 360 is why bytes are 8-bits long today! 



IBM 360: Initial Implementations 
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          Model 30 . . .   Model 70 

 Storage 8K - 64 KB   256K - 512 KB 

 Datapath 8-bit   64-bit 

 Circuit Delay 30 nsec/level  5 nsec/level 

 Local Store Main Store  Transistor Registers 

 Control Store Read only 1 sec Conventional circuits 

 

IBM 360 instruction set architecture (ISA) completely hid the 
underlying technological differences between various models. 

Milestone: The first true ISA designed as portable hardware-
software interface! 

 With minor modifications it still survives today! 



IBM 360: 47 years later… 

The zSeries z11 Microprocessor 
• 5.2 GHz in IBM 45nm PD-SOI CMOS technology 

• 1.4 billion transistors in 512 mm2 

• 64-bit virtual addressing 

• original S/360 was 24-bit, and S/370 was 31-bit extension 

• Quad-core design 

• Three-issue out-of-order superscalar pipeline 

• Out-of-order memory accesses 

• Redundant datapaths 

• every instruction performed in two parallel datapaths and results 

compared 

• 64KB L1 I-cache, 128KB L1 D-cache on-chip 

• 1.5MB private L2 unified cache per core, on-chip 

• On-Chip 24MB eDRAM L3 cache 

• Scales to 96-core multiprocessor with 768MB of  shared 

L4 eDRAM 60 

[ IBM, HotChips, 2010] 



And in conclusion … 
• Computer Architecture >> ISAs and RTL 

• ACS is about interaction of  hardware and software, and 

design of  appropriate abstraction layers 

• Computer architecture is shaped by technology and 

applications 

• History provides lessons for the future 

• Computer Science at the crossroads from sequential to 

parallel computing 

• Salvation requires innovation in many fields, including computer 

architecture 

• Read Chapter 1 & Appendix A for next time! 
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