
Architecture of Computer Systems

 Lecture 1 - Introduction

What is Computer Architecture?

2

Application

Physics

Gap too large to bridge
in one step

In its broadest definition, computer architecture is the design of
the abstraction layers that allow us to implement information
processing applications efficiently using available manufacturing
technologies.

(but there are exceptions, e.g.
magnetic compass)

Abstraction Layers in Modern Systems

3

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Programming Language

Circuits

Physics

Cost of software development
makes compatibility a major
force in market

Architecture continually changing

4

Applications

Technology

Applications
suggest how to
improve
technology,
provide
revenue to
fund
development

Improved
technologies
make new
applications
possible

Computing Devices Then…

EDSAC, University of Cambridge, UK, 1949
5

Computing Devices Now

6

Robots

Supercomputers
Automobiles

Laptops

Set-top
boxes

Smart
phones

Servers

Media
Players

Sensor Nets

Routers

Cameras
Games

Uniprocessor Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

??%/year

7

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

8

[from Kurzweil]

Major

Technology

Generations Bipolar
nMOS

CMOS

pMOS

Relays

Vacuu

m

Tubes

Electromechanical

?

The End of the Uniprocessor Era

Single biggest change in the history of computing

systems

9

ACS Executive Summary

10

Plus, the technology
behind chip-scale
multiprocessors (CMPs)
and graphics processing
units (GPUs)

What you’ll understand and
experiment with in ACS

ACS Administrivia

Lectures: 20%

Section: 40% - late for one week 1/3 of total mark.

IWS: 40% - CPC 1

Text: Computer Architecture: A Quantitative Approach,

 Hennessey and Patterson, 5th Edition (2012)

 Readings assigned from this edition, some readings available
in older editions –see web page.

11

ACS Structure and Syllabus

Five modules

1. Simple machine design (ISAs, microprogramming, unpipelined machines,

Iron Law, simple pipelines)

2. Memory hierarchy (DRAM, caches, optimizations) plus virtual memory

systems, exceptions, interrupts

3. Complex pipelining (score-boarding, out-of-order issue)

4. Explicitly parallel processors (vector machines, VLIW machines,

multithreaded machines)

5. Multiprocessor architectures (memory models, cache coherence,

synchronization)

12

Computer Architecture:

 A Little History

Throughout the course we’ll use a historical narrative to help understand why certain ideas arose

Why worry about old ideas?

• Helps to illustrate the design process, and explains why certain decisions were taken

• Because future technologies might be as constrained as older ones

• Those who ignore history are doomed to repeat it

• Every mistake made in mainframe design was also made in minicomputers, then microcomputers, where next?

13

Charles Babbage 1791-1871
Lucasian Professor of Mathematics,

Cambridge University, 1827-1839

14

Charles Babbage
• Difference Engine 1823

• Analytic Engine 1833

• The forerunner of modern digital computer!

15

Application
– Mathematical Tables – Astronomy
– Nautical Tables – Navy

Background
– Any continuous function can be approximated by a polynomial -

-- Weierstrass

Technology
– mechanical - gears, Jacquard’s loom, simple calculators

Difference Engine
A machine to compute mathematical tables

Weierstrass:

• Any continuous function can be approximated by a polynomial

• Any polynomial can be computed from difference tables

An example

f(n) = n2 + n + 41

d1(n) = f(n) - f(n-1) = 2n

d2(n) = d1(n) - d1(n-1) = 2

f(n) = f(n-1) + d1(n) = f(n-1) + (d1(n-1) + 2)

16

all you need is an adder!

n

d2(n)

d1(n)

f(n)

0

41

1

2

2

2

3

2

4

2

4 6 8

43 47 53 61

Difference Engine
1823

• Babbage’s paper is published

1834

• The paper is read by Scheutz & his son in
Sweden

1842

• Babbage gives up the idea of building it; he
is onto Analytic Engine!

1855

• Scheutz displays his machine at the Paris
World Fare

• Can compute any 6th degree polynomial

• Speed: 33 to 44 32-digit numbers per minute!

17

Now the machine is at the Smithsonian

Analytic Engine 1833: Babbage’s paper was published
• conceived during a hiatus in the development of the difference engine

Inspiration: Jacquard Looms
• looms were controlled by punched cards

• The set of cards with fixed punched holes dictated the pattern of
weave  program

• The same set of cards could be used with different colored threads
 numbers

1871: Babbage dies
• The machine remains unrealized.

18

It is not clear if the analytic engine could be built
using the mechanical technology of the time

Analytic Engine
The first conception of a general-purpose computer

1. The store in which all variables to be operated upon, as well as all those

quantities which have arisen from the results of the operations are

placed.

2. The mill into which the quantities about to be operated upon are always

brought.

19

The program
 Operation variable1 variable2 variable3

An operation in the mill required feeding two punched cards and
producing a new punched card for the store.

An operation to alter the sequence was also provided!

The first programmer
Ada Byron aka “Lady Lovelace” 1815-52

20

Ada’s tutor was Babbage himself!

Babbage’s Influence

• Babbage’s ideas had great influence later primarily
because of

• Luigi Menabrea, who published notes of Babbage’s lectures in
Italy

• Lady Lovelace, who translated Menabrea’s notes in English and
thoroughly expanded them.

“... Analytic Engine weaves algebraic patterns....”

• In the early twentieth century - the focus shifted to
analog computers but

• Harvard Mark I built in 1944 is very close in spirit to the Analytic
Engine.

21

Harvard Mark I •Built in 1944 in IBM Endicott laboratories
• Howard Aiken – Professor of Physics at Harvard

• Essentially mechanical but had some electro-magnetically controlled

relays and gears

• Weighed 5 tons and had 750,000 components

• A synchronizing clock that beat every 0.015 seconds (66Hz)

22

Performance:
 0.3 seconds for addition
 6 seconds for multiplication
 1 minute for a sine calculation
Decimal arithmetic
No Conditional Branch!

Broke down once a week!

Linear Equation Solver
John Atanasoff, Iowa State University

1930’s:
• Atanasoff built the Linear Equation Solver.
• It had 300 tubes!
• Special-purpose binary digital calculator
• Dynamic RAM (stored values on refreshed capacitors)

Application:

• Linear and Integral differential equations

Background:

• Vannevar Bush’s Differential Analyzer
 --- an analog computer

Technology:
• Tubes and Electromechanical relays

23
Atanasoff decided that the correct mode of computation was
using electronic binary digits.

Electronic Numerical Integrator

and Computer (ENIAC)

• Inspired by Atanasoff and Berry, Eckert and Mauchly designed and built
ENIAC (1943-45) at the University of Pennsylvania

• The first, completely electronic, operational, general-purpose analytical
calculator!

• 30 tons, 72 square meters, 200KW

• Performance

• Read in 120 cards per minute

• Addition took 200 ms, Division 6 ms

• 1000 times faster than Mark I

• Not very reliable!

24

Application: Ballistic calculations

angle = f (location, tail wind, cross wind,
 air density, temperature, weight of shell,
 propellant charge, ...)

WW-2 Effort

Electronic Discrete Variable Automatic

Computer (EDVAC)
• ENIAC’s programming system was external

• Sequences of instructions were executed independently of the results of the
calculation

• Human intervention required to take instructions “out of order”

• Eckert, Mauchly, John von Neumann and others designed EDVAC
(1944) to solve this problem

• Solution was the stored program computer

  “program can be manipulated as data”

• First Draft of a report on EDVAC was published in 1945, but just had
von Neumann’s signature!

• In 1973 the court of Minneapolis attributed the honor of inventing the computer
to John Atanasoff

25

Stored Program Computer

manual control calculators

automatic control

external (paper tape) Harvard Mark I , 1944

 Zuse’s Z1, WW2

internal

plug board ENIAC 1946

read-only memory ENIAC 1948

read-write memory EDVAC 1947 (concept)

• The same storage can be used to store program and data

26

Program = A sequence of instructions

How to control instruction sequencing?

 EDSAC 1950 Maurice Wilkes

Technology Issues

27

ENIAC EDVAC
18,000 tubes 4,000 tubes
20 10-digit numbers 2000 word storage
 mercury delay lines

ENIAC had many asynchronous parallel units
but only one was active at a time

BINAC : Two processors that checked each other
for reliability.

 Didn’t work well because processors never
 agreed

Dominant Problem: Reliability

28

 Mean time between failures (MTBF)
MIT’s Whirlwind with an MTBF of 20 min. was perhaps the
most reliable machine !

Reasons for unreliability:

 1. Vacuum Tubes
 2. Storage medium

 acoustic delay lines
 mercury delay lines
 Williams tubes
 Selections

Reliability solved by invention of Core memory by
J. Forrester 1954 at MIT for Whirlwind project

Commercial Activity: 1948-52

IBM’s SSEC (follow on from Harvard Mark I)

Selective Sequence Electronic Calculator

• 150 word store.

• Instructions, constraints, and tables of data were read from paper tapes.

• 66 Tape reading stations!

• Tapes could be glued together to form a loop!

• Data could be output in one phase of computation and read in the next phase of
computation.

29

And then there was IBM 701

30

IBM 701 -- 30 machines were sold in 1953-54
 used CRTs as main memory, 72 tubes of 32x32b each

IBM 650 -- a cheaper, drum based machine,
 more than 120 were sold in 1954
 and there were orders for 750 more!

Users stopped building their own machines.

Why was IBM late getting into computer
technology?

IBM was making too much money!
Even without computers, IBM revenues were
doubling every 4 to 5 years in 40’s and 50’s.

Computers in mid 50’s
• Hardware was expensive

• Stores were small (1000 words)

 No resident system software!

• Memory access time was 10 to 50 times slower than the
processor cycle

 Instruction execution time was totally dominated by the memory reference
time.

• The ability to design complex control circuits to execute an instruction
was the central design concern as opposed to the speed of
decoding or an ALU operation

• Programmer’s view of the machine was inseparable from the
actual hardware implementation

31

The IBM 650 (1953-4)

32

[From 650 Manual, © IBM]

Magnetic Drum (1,000
or 2,000

10-digit decimal
words)

20-digit
accumulator

Active instruction
(including next

program counter)

Digit-serial
ALU

Programmer’s view of the IBM 650

33

A drum machine with 44 instructions

Instruction: 60 1234 1009

• “Load the contents of location 1234 into the distribution; put it
also into the upper accumulator; set lower accumulator to zero;
and then go to location 1009 for the next instruction.”

Good programmers
optimized the placement of
instructions on the drum to
reduce latency!

The Earliest Instruction Sets

34

Single Accumulator - A carry-over from the calculators.
LOAD x AC M[x]
STORE x M[x] (AC)

ADD x AC (AC) + M[x]
SUB x

MUL x Involved a quotient register
DIV x

SHIFT LEFT AC 2  (AC)
SHIFT RIGHT

JUMP x PC x
JGE x if (AC) ³ 0 then PC x

LOAD ADR x AC Extract address field(M[x])
STORE ADR x

Typically less than 2 dozen instructions!

Programming:

Single Accumulator Machine

35

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

Ci  Ai + Bi, 1  i  n

How to modify the addresses A, B and C ?

A

B

C

N

ONE

code

-n

1

Self-Modifying Code

36

LOOP LOAD N
JGE DONE
ADD ONE
STORE N

F1 LOAD A
F2 ADD B
F3 STORE C

JUMP LOOP
DONE HLT

modify the
program
for the next
iteration

Each iteration involves
 total book-
 keeping
instruction
fetches

operand
fetches

stores

Ci  Ai + Bi, 1  i  n

LOAD ADR F1
ADD ONE
STORE ADR F1
LOAD ADR F2
ADD ONE
STORE ADR F2
LOAD ADR F3
ADD ONE
STORE ADR F3
JUMP LOOP

DONE HLT

17

10

5

14

8

4

Index Registers
Tom Kilburn, Manchester University, mid 50’s

37

Modify existing instructions
LOAD x, IX AC  M[x + (IX)]
ADD x, IX AC  (AC) + M[x + (IX)]
...

Add new instructions to manipulate index registers
JZi x, IX if (IX)=0 then PC  x
 else IX  (IX) + 1
LOADi x, IX IX  M[x] (truncated to fit IX)
...

One or more specialized registers to simplify
address calculation

Index registers have accumulator-like
characteristics

Using Index Registers

38

 LOADi -n, IX
LOOP JZi DONE, IX

LOAD LASTA, IX
ADD LASTB, IX
STORE LASTC, IX
JUMP LOOP

DONE HALT

• Program does not modify itself
• Efficiency has improved dramatically (ops / iter)
 with index regs without index regs

instruction fetch 17 (14)
operand fetch 10 (8)
store 5 (4)

• Costs: Instructions are 1 to 2 bits longer

Index registers with ALU-like circuitry
Complex control

A

LASTA

Ci  Ai + Bi, 1  i  n

5(2)
2
1

Operations on Index Registers

39

To increment index register by k
AC  (IX) new instruction
AC  (AC) + k
IX  (AC) new instruction

also the AC must be saved and restored.

It may be better to increment IX directly
INCi k, IX IX  (IX) + k

More instructions to manipulate index register
STOREi x, IX M[x]  (IX) (extended to fit a word)

...

IX begins to look like an accumulator
 several index registers

several accumulators
  General Purpose Registers

Evolution of Addressing Modes

40

1. Single accumulator, absolute address
LOAD x

2. Single accumulator, index registers
LOAD x, IX

3. Indirection
LOAD (x)

4. Multiple accumulators, index registers, indirection

LOAD R, IX, x

or LOAD R, IX, (x) the meaning?

 R  M[M[x] + (IX)]

 or R  M[M[x + (IX)]]

5. Indirect through registers
LOAD RI, (RJ)

6. The works
LOAD RI, RJ, (RK) RJ = index, RK = base addr

Variety of Instruction Formats
• One address formats: Accumulator machines

• Accumulator is always other source and destination operand

• Two address formats: the destination is same as one of the operand
sources

 (Reg  Reg) to Reg RI  (RI) + (RJ)

 (Reg  Mem) to Reg RI  (RI) + M[x]

• x can be specified directly or via a register

• effective address calculation for x could include indexing, indirection, ...

• Three address formats: One destination and up to two operand
sources per instruction

 (Reg x Reg) to Reg RI  (RJ) + (RK)

 (Reg x Mem) to Reg RI  (RJ) + M[x]
41

Zero Address Formats

• Operands on a stack

 add M[sp-1]  M[sp] + M[sp-1]

 load M[sp]  M[M[sp]]

• Stack can be in registers or in memory (usually top of stack cached in

registers)

42

C

B

A
SP

Register

Burrough’s B5000 Stack Architecture:
An ALGOL Machine, Robert Barton, 1960

• Machine implementation can be completely hidden if the programmer is provided only a high-level language
interface.

• Stack machine organization because stacks are convenient for:

1. expression evaluation;

2. subroutine calls, recursion, nested interrupts;

3. accessing variables in block-structured languages.

• B6700, a later model, had many more innovative features

• tagged data

• virtual memory

• multiple processors and memories

43

Evaluation of Expressions

44

a

b

c

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

push a push b push c multiply

*

Evaluation Stack

b * c

Evaluation of Expressions

45

a

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

add

+

Evaluation Stack

b * c

a + b * c

Hardware organization of the stack

• Stack is part of the processor state

 stack must be bounded and small

  number of Registers,

 not the size of main memory

• Conceptually stack is unbounded

 a part of the stack is included in the

 processor state; the rest is kept in the

 main memory

 46

Stack Operations and

Implicit Memory References

• Suppose the top 2 elements of the stack are kept in
registers and the rest is kept in the memory.

Each push operation 1 memory reference

 pop operation  1 memory reference

 No Good!

• Better performance by keeping the top N elements in
registers, and memory references are made only when
register stack overflows or underflows.

 Issue - when to Load/Unload registers ?

47

Stack Size and Memory References

48

program stack (size = 2) memory refs
push a R0 a
push b R0 R1 b
push c R0 R1 R2 c, ss(a)
* R0 R1 sf(a)
+ R0
push a R0 R1 a
push d R0 R1 R2 d, ss(a+b*c)
push c R0 R1 R2 R3 c, ss(a)
* R0 R1 R2 sf(a)
+ R0 R1 sf(a+b*c)
push e R0 R1 R2 e,ss(a+b*c)
- R0 R1 sf(a+b*c)
/ R0

a b c * + a d c * + e - /

4 stores, 4 fetches (implicit)

Stack Size and Expression Evaluation

49

program stack (size = 4)
push a R0
push b R0 R1
push c R0 R1 R2
* R0 R1
+ R0
push a R0 R1
push d R0 R1 R2
push c R0 R1 R2 R3
* R0 R1 R2
+ R0 R1
push e R0 R1 R2
- R0 R1
/ R0

a b c * + a d c * + e - /

a and c are
“loaded” twice


not the best
use of registers!

Register Usage in a GPR Machine

50

More control over register usage
since registers can be named
explicitly

Load Ri m
Load Ri (Rj)
Load Ri (Rj) (Rk)


- eliminates unnecessary

 Loads and Stores
- fewer Registers

but instructions may be longer!

Load R0 a
Load R1 c
Load R2 b
Mul R2 R1

(a + b * c) / (a + d * c - e)

Reuse
R2

Add R2 R0
Load R3 d
Mul R3 R1
Add R3 R0

Reuse
R3

Load R0 e
Sub R3 R0
Div R2 R3

Reuse
R0

Stack Machines: Essential features

• In addition to push, pop, +

etc., the instruction set must

provide the capability to

• refer to any element in the data area

• jump to any instruction in the code

area

• move any element in the stack frame

to the top

51

machinery to
carry out
+, -, etc.

stack
SP

DP

 PC

data

.

.

.

a
b
c



push a
push b
push c
*
+
push e
/

code

Stack versus GPR Organization
Amdahl, Blaauw and Brooks, 1964

1. The performance advantage of push down stack organization is derived

from the presence of fast registers and not the way they are used.

2.“Surfacing” of data in stack which are “profitable” is approximately 50%

because of constants and common subexpressions.

3. Advantage of instruction density because of implicit addresses is

equaled if short addresses to specify registers are allowed.

4. Management of finite depth stack causes complexity.

5. Recursive subroutine advantage can be realized only with the help of an

independent stack for addressing.

6. Fitting variable-length fields into fixed-width word is awkward.

52

Stack Machines (Mostly) Died by 1980

1. Stack programs are not smaller if short (Register) addresses are
permitted.

2. Modern compilers can manage fast register space better than the
stack discipline.

53

GPR’s and caches are better than stack and displays

Early language-directed architectures often did not
take into account the role of compilers!

 B5000, B6700, HP 3000, ICL 2900, Symbolics 3600

Some would claim that an echo of this mistake is
visible in the SPARC architecture register windows -
more later…

Stacks post-1980
• Inmos Transputers (1985-2000)

• Designed to support many parallel processes in Occam language

• Fixed-height stack design simplified implementation

• Stack trashed on context swap (fast context switches)

• Inmos T800 was world’s fastest microprocessor in late 80’s

• Forth machines

• Direct support for Forth execution in small embedded real-time environments

• Several manufacturers (Rockwell, Patriot Scientific)

• Java Virtual Machine

• Designed for software emulation, not direct hardware execution

• Sun PicoJava implementation + others

• Intel x87 floating-point unit

• Severely broken stack model for FP arithmetic

• Deprecated in Pentium-4, replaced with SSE2 FP registers
54

Software Developments

55

up to 1955 Libraries of numerical routines
 - Floating point operations
 - Transcendental functions
 - Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956

Operating Systems -
 - Assemblers, Loaders, Linkers, Compilers

 - Accounting programs to keep track of
 usage and charges

 Machines required experienced operators
  Most users could not be expected to understand
 these programs, much less write them

 Machines had to be sold with a lot of resident

software

Compatibility Problem at IBM

56

By early 60’s, IBM had 4 incompatible lines of
computers!

701  7094
650  7074
702  7080
1401  7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:
 magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche
 business, scientific, real time, ...

 IBM 360

IBM 360 : Design Premises
Amdahl, Blaauw and Brooks, 1964

• The design must lend itself to growth and successor machines

• General method for connecting I/O devices

• Total performance - answers per month rather than bits per
microsecond  programming aids

• Machine must be capable of supervising itself without manual
intervention

• Built-in hardware fault checking and locating aids to reduce down time

• Simple to assemble systems with redundant I/O devices, memories etc.
for fault tolerance

• Some problems required floating-point larger than 36 bits

57

IBM 360: A General-Purpose Register (GPR)

Machine
• Processor State

• 16 General-Purpose 32-bit Registers

• may be used as index and base register

• Register 0 has some special properties

• 4 Floating Point 64-bit Registers

• A Program Status Word (PSW)

• PC, Condition codes, Control flags

• A 32-bit machine with 24-bit addresses

• But no instruction contains a 24-bit address!

• Data Formats

• 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words
58 The IBM 360 is why bytes are 8-bits long today!

IBM 360: Initial Implementations

59

 Model 30 . . . Model 70

 Storage 8K - 64 KB 256K - 512 KB

 Datapath 8-bit 64-bit

 Circuit Delay 30 nsec/level 5 nsec/level

 Local Store Main Store Transistor Registers

 Control Store Read only 1 sec Conventional circuits

IBM 360 instruction set architecture (ISA) completely hid the
underlying technological differences between various models.

Milestone: The first true ISA designed as portable hardware-
software interface!

 With minor modifications it still survives today!

IBM 360: 47 years later…

The zSeries z11 Microprocessor
• 5.2 GHz in IBM 45nm PD-SOI CMOS technology

• 1.4 billion transistors in 512 mm2

• 64-bit virtual addressing

• original S/360 was 24-bit, and S/370 was 31-bit extension

• Quad-core design

• Three-issue out-of-order superscalar pipeline

• Out-of-order memory accesses

• Redundant datapaths

• every instruction performed in two parallel datapaths and results

compared

• 64KB L1 I-cache, 128KB L1 D-cache on-chip

• 1.5MB private L2 unified cache per core, on-chip

• On-Chip 24MB eDRAM L3 cache

• Scales to 96-core multiprocessor with 768MB of shared

L4 eDRAM 60

[IBM, HotChips, 2010]

And in conclusion …
• Computer Architecture >> ISAs and RTL

• ACS is about interaction of hardware and software, and

design of appropriate abstraction layers

• Computer architecture is shaped by technology and

applications

• History provides lessons for the future

• Computer Science at the crossroads from sequential to

parallel computing

• Salvation requires innovation in many fields, including computer

architecture

• Read Chapter 1 & Appendix A for next time!
61

Acknowledgements

• These slides contain material developed and copyright by:

• Arvind (MIT)

• Krste Asanovic (MIT/UCB)

• Joel Emer (Intel/MIT)

• James Hoe (CMU)

• John Kubiatowicz (UCB)

• David Patterson (UCB)

• MIT material derived from course 6.823

• UCB material derived from course CS252

62

