Sorting in Parallel

Why?
@ Sorting, or rearranging a list of numbers into increasing (decreasing)
order, is a fundamental operation that appears in many applications

Potential speedup?

@ Best sequential sorting algorithms (mergesort and quicksort) have
(respectively worst-case and average) time complexity of O(nlog(n))

@ The best we can aim with a parallel sorting algorithm using n
processing units is thus a time complexity of
O(nlog(n))/n = O(log(n))

e But, in general, a realistic O(log(n)) algorithm with n processing
units is a goal that is not easy to achieve with comparasion-based
sorting algorithms

R. Rocha and F. Silva (DCC-FCUP) Parallel Sorting Algorithms Parallel Computing 15/16 2 /41



Compare-and-Exc e

An operation that forms the basis of several classical sequential sorting
algorithms is the compare-and-exchange (or compare-and-swap)
operation.

In a compare-and-exchange operation, two numbers, say A and B, are

compared and if they are not ordered, they are exchanged. Otherwise, they
remain unchanged.

if (A > B) { // sorting in increasing order

temp = A;
A = B;
B = temp;

3

Question: how can compare-and-exchange be done in parallel?
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Parallel Compare-and-Exchange

Version 1 — P; sends A to P, which then compares A and B and sends
back to P; the min(A, B).

Sequence of steps

P, P2
A Send(A)
B %
fA>B send{BR
else send(A) IfA>RBload A
@ —else load B
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Parallel Compare-and-Exchange

Version 2 — P; sends A to P, and P, sends B to Py, then both perform
comparisons and P keeps the min(A, B) and P, keeps the max(A, B).

Py P,
Send(A) B
Send(B) ] 8
@ -\j f A > B load
If A > B load B Compare ©)

©
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Data Partitioning

So far, we have assumed that there is one processing unit for each
number, but normally there would be many more numbers (n) than
processing units (p) and, in such cases, a list of n/p numbers would be
assigned to each processing unit.

When dealing with lists of numbers, the operation of merging two
sorted lists is a common operation in sorting algorithms.
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Parallel Merging

Version 1 — P; sends its list to P,, which then performs the merge
operation and sends back to P; the lower half of the merged list.

Py

Keep
higher
numbers

Original

numbers

Return
lower
numbers

Original
numbers
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Parallel Merging

Version 2 — both processing units exchange their lists, then both perform
the merge operation and P; keeps the lower half of the merged list and P>
keeps the higher half of the merged list.

P,
Original
i numbers
rigina
nungwhers Ei‘a?][(}er
numbers
(fmalb )
Keep Oridi numbers
riginal
lower nurﬁ]bels
numbers
(final
numbers
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Bubble Sort

In bubble sort, the largest number is first moved to the very end of the list
by a series of compare-and-exchange operations, starting at the opposite
end. The procedure repeats, stopping just before the previously positioned
largest number, to get the next-largest number. In this way, the larger
numbers move (like a bubble) toward the end of the list.

for (i =N-1; i > 0; i--)
for (j = 0; j < i; j++) {
k=3 +1;
if (alj] > alk]l) {
temp = aljl;
aljl = alkl;
alk] = temp;
}
}

The total number of compare-and-exchange operations is
7:_11 i = w which corresponds to a time complexity of O(n?).
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Parallel Bubble Sort

A possible idea is to run multiple iterations in a pipeline fashion, i.e.,
start the bubbling action of the next iteration before the preceding
iteration has finished in such a way that it does not overtakes it.

Phase 1

<=l
[0 [Fod]

Phase 2

mmel[ ] [ Jol] [J@f]

Phase 3

F’ha%gﬂ D\@:I:‘ I:I:—G/—\—;D
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Odd-Even Transposition Sort

Odd-even transposition sort is a variant of bubble sort which operates in
two alternating phases:

@ Even Phase: even processes exchange values with right neighbors
('DO — P, Py « Pj3, )

@ Odd Phase: odd processes exchange values with right neighbors

For sequential programming, odd-even transposition sort has no particular
advantage over normal bubble sort. However, its parallel implementation
corresponds to a time complexity of O(n).
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Odd-Even Transposition Sort

Po Py P, P3 Py Ps Ps =
Step
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Odd-Even Transposition Sort

rank = process_id();
A = initial_value();
for (i = 0; i < N; i++) {
if (i % 2==0) { // even phase
if (rank % 2 == 0) { // even process
recv(B, rank + 1); send(A, rank + 1);
A = min(A,B);
} else { // odd process
send(A, rank - 1); recv(B, rank - 1);
A = max(A,B);

}
} else if (rank > O && rank < N - 1) { // odd phase
if (rank % 2 == 0) { // even process

recv(B, rank - 1); send(A, rank - 1);
A = max(A,B);
} else { // odd process
send(A, rank + 1); recv(B, rank + 1);
A = min(A,B);
}
}

T — e
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Mergesort

Mergesort is a classical sorting algorithm using a divide-and-conquer
approach. The initial unsorted list is first divided in half, each half sublist
is then applied the same division method until individual elements are
obtained. Pairs of adjacent elements/sublists are then merged into
sorted sublists until the one fully merged and sorted list is obtained.

‘56‘29‘35‘42‘15‘41‘75‘21‘

56 29 35 42 15 41 75 21
‘ 56 ‘ 29 | | 35 ‘ 42 ‘ ‘ 15 ‘ 41 | | 75 ‘ 21 ‘
B
‘ 29 ‘ 56 ‘ ‘ 35 ‘ 42 ‘ ‘ 15 ‘ 41 ‘ ‘ 21 ‘ 75 ‘
29 | 35 | 42 | 58 15 | 21 41 | 75
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Computations only occur when merging the sublists. In the worst case, it
takes 2s — 1 steps to merge two sorted sublists of size s. If we have m = 2
sorted sublists in a merging step, it takes

= n —

m m m
T2s—1)=ms - — =z
2(5 ) = ms 5 5

steps to merge all sublists (two by two).

Since in total there are log(n) merging steps, this corresponds to a time
complexity of O(nlog(n)).
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Parallel Mergesort

The idea is to take advantage of the tree structure of the algorithm
to assign work to processes.

Unsorted list
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