Argonne°

NATIONAL LABORATORY

Advanced MPI Programming

Tutorial at SC14, November 2014

Latest slides and code examples are available at

www.mcs.anl.gov/~thakur/scl4d-mpi—-tutorial

Pavan Balaji William Gropp
Argonne National Laboratory University of lllinois, Urbana-Champaign
Email: balaji@mcs.anl.gov Email: wagropp®@illinois.edu
Web: www.mcs.anl.gov/~balaji Web: www.cs.illinois.edu/~wgropp
Torsten Hoefler Rajeev Thakur
ETH Zurich Argonne National Laboratory
Email: htor@inf.ethz.ch Email: thakur@mcs.anl.gov
Web: http://htor.inf.ethz.ch/ Web: www.mcs.anl.gov/~thakur

m Ziirich




Outline

Morning Afternoon
= Introduction = MPI and Threads
— MPI-1, MPI-2, MPI-3 — Thread safety specification in MPI
= Running example: 2D stencil code ~ Howitenables hybrid programming

— Hybrid (MPI + shared memory) version

— Simple point-to-point version
plep P of 2D stencil code

= Derived datatypes = Nonblocking collectives
— Use in 2D stencil code — Parallel FFT example

= One-sided communication = Process topologies
— Basics and new features in MPI-3 ~ 2D stencil example
_ Usein 2D stencil code = Neighborhood collectives

— 2D stencil example
— Advanced topics g

= Recent efforts of the MPI Forum
e Global address space ecent etforts ot the oru

. . ] M
communication Conclusions

Advanced MPI, SC14 (11/17/2014)



AAAAAAAAAAAAAAAAAA

Advanced Topics: One-sided Communication

m Ziirich



One-sided Communication

= The basic idea of one-sided communication models is to
decouple data movement with process synchronization

— Should be able move data without requiring that the remote process
synchronize

— Each process exposes a part of its memory to other processes

— Other processes can directly read from or write to this memory

Global
Address

Space :
P Private

Memory
Region

Advanced MPI, SC14 (11/17/2014) 43



Two-sided Communication Example

Processor Processor

Memory
Segment

Segment

Memory
Segment
Memory
Segment
Memory
Segment

MPI implementation MPI implementation

_ Advanced MPI, SC14 (11/17/2014) 44



One-sided Communication Example

Processor Processo

MPI implementation MPI implementation

_ Advanced MPI, SC14 (11/17/2014) 45



Comparing One-sided and Two-sided Programming

Even the
sending
process is
delayed

Delay in
process 1
does not
affect
process 0

=

=

Process O

SEND(data)

Process O

PUT(data) —

Process 1

< >PrrmQg

RECV(data)

Process 1

GET(data)

>

< >DrrmQg

Advanced MPI, SC14 (11/17/2014)

46



What we need to know in MPlI RMA

"= How to create remote accessible memory?
= Reading, Writing and Updating remote memory

= Data Synchronization

= Memory Model

Advanced MPI, SC14 (11/17/2014) 47



Creating Public Memory

= Any memory used by a process is, by default, only locally
accessible

— X =malloc(100);

= Once the memory is allocated, the user has to make an

explicit MPI call to declare a memory region as remotely
accessible
— MPI terminology for remotely accessible memory is a “window”

— A group of processes collectively create a “window”

= Once a memory region is declared as remotely accessible, all
processes in the window can read/write data to this memory
without explicitly synchronizing with the target process

Advanced MPI, SC14 (11/17/2014)

48



Window creation models

Four models exist

MPI_WIN_CREATE

e You already have an allocated buffer that you would like to make
remotely accessible

MPI_WIN_ALLOCATE

e You want to create a buffer and directly make it remotely accessible

MPI_WIN_CREATE_DYNAMIC
e You don’t have a buffer yet, but will have one in the future

e You may want to dynamically add/remove buffers to/from the window

MPI_WIN_ALLOCATE_SHARED

e You want multiple processes on the same node share a buffer

Advanced MPI, SC14 (11/17/2014)

49



MPI_WIN_CREATE

MPI Win create(void *base, MPI Aint size,
int disp unit, MPI Info info,

MPI Comm comm, MPI Win *win)

= Expose a region of memory in an RMA window

Only data exposed in a window can be accessed with RMA ops.

= Arguments:

base - pointer to local data to expose
Size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)

info - info argument (handle)
comm - communicator (handle)
win - window (handle)

Advanced MPI, SC14 (11/17/2014) 50



Example with MPI_WIN_CREATE

int main(int argc, char ** argv)

{

int *a; MPI_Win win;
MPI Init(&argc, &argv);

/* create private memory */

MPI Alloc mem(1000*sizeof(int), MPI_ INFO NULL, &a);
/* use private memory like you normally would */
af[0] = 1; a[l] = 2;

/* collectively declare memory as remotely accessible */
MPI Win create(a, 1000*sizeof(int), sizeof(int),
MPI_INFO NULL, MPI_COMM WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM WORLD */

MPI_Win_free(&win);

MPI Free mem(a) ;
MPI Finalize(); return O;

Advanced MPI, SC14 (11/17/2014) 51



MPI_WIN_ALLOCATE

MPI Win allocate(MPI_Aint size, int disp unit,
MPI Info info, MPI Comm comm, void *baseptr,
MPI Win *win)

= Create a remotely accessible memory region in an RMA window

Only data exposed in a window can be accessed with RMA ops.

= Arguments:

size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
info - info argument (handle)

comm - communicator (handle)

baseptr - pointer to exposed local data

win - window (handle)

Advanced MPI, SC14 (11/17/2014)

52



Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{
int *a; MPI Win win;
MPI Init(&argc, &argv);
/* collectively create remote accessible memory in a window */
MPI Win allocate(1000*sizeof(int), sizeof(int), MPI INFO NULL,
MPI_COMM WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM WORLD */

MPI_Win_free(&win);

MPI Finalize(); return O;

Advanced MPI, SC14 (11/17/2014) 53



MPI_WIN_CREATE_DYNAMIC

MPI Win create dynamic (MPI_ Info info, MPI Comm comm,
MPI Win *win)

= Create an RMA window, to which data can later be attached
— Only data exposed in a window can be accessed with RMA ops
= |nitially “empty”

— Application can dynamically attach/detach memory to this window by
calling MPI_Win_attach/detach

— Application can access data on this window only after a memory
region has been attached

= Window origin is MPI_BOTTOM
— Displacements are segment addresses relative to MPI_BOTTOM

— Must tell others the displacement after calling attach

Advanced MPI, SC14 (11/17/2014)

54



S —
Example with MPI_WIN_CREATE_DYNAMIC

int main(int argc, char ** argv)

{

int *a; MPI_Win win;

MPI Init(&argc, &argv);
MPI Win create dynamic (MPI_INFO NULL, MPI_COMM WORLD, &win);

/* create private memory */
a = (int *) malloc (1000 * sizeof (int)) ;
/* use private memory like you normally would */

a[0] =1; a[l] = 2;

/* locally declare memory as remotely accessible */
MPI Win attach(win, a, 1000*sizeof (int))

/* Array ‘a’ is now accessible from all processes */
/* undeclare remotely accessible memory */
MPI Win detach(win, a); free(a);

MPI_Win:free(&win);

MPI Finalize(); return O;

Advanced MPI, SC14 (11/17/2014) 55



Data movement

= MPI provides ability to read, write and atomically modify data

in remotely accessible memory regions

MPI_PUT

MPI_GET
MPI_ACCUMULATE
MPI_GET_ACCUMULATE
MPI_COMPARE_AND_SWAP
MPI_FETCH_AND_OP

Advanced MPI, SC14 (11/17/2014)

56



Data movement: Put

MPI Put(void *origin addr, int origin_ count,

MPI Aint target disp, int target count,

\_ MPI Datatype target dtype, MPI Win win)

~

MPI Datatype origin dtype, int target rank,

J

= Move data from origin, to target

= Separate data description triples for origin and target

Origin Target

Advanced MPI, SC14 (11/17/2014)

Remotely
Accessible
Memory

Private
Memory

57



Data movement: Get

MPI Get(void *origin addr, int origin_ count,

MPI Aint target disp, int target count,

\_ MPI Datatype target dtype, MPI Win win)

MPI Datatype origin dtype, int target rank,

~

J

"= Move data to origin, from target

Origin Target

Advanced MPI, SC14 (11/17/2014)

Remotely
Accessible
Memory

Private
Memory

58



\.__________________
Atomic Data Aggregation: Accumulate
4 )

MPI Accumulate(void *origin_addr, int origin_count,

MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,
\_ MPI Datatype target dtype, , MPI Win win) )

= Atomic update operation, similar to a put

— Reduces origin and target data into target buffer using op argument as
combiner

— Predefined ops only, no user-defined operations

= Different data layouts between

o Remotely
target/origin OK Accessible
— Basic type elements must match Memory
= Op=MPI_REPLACE ,
— Private
— Implements f(a,b)=b Memory

— Atomic PUT Origin Target

Advanced MPI, SC14 (11/17/2014) 59



Atomic Data Aggregation: Get Accumulate

€

MPI Datatype origin dtype, void *result addr,
int result count, MPI Datatype result dtype,
int target rank, MPI Aint target disp,

int target count, MPI Datatype target dype,
\ , MPI Win win)

PI_ Get accumulate (void *origin_addr, int origin_count\

14

/

= Atomic read-modify-write
— Op =MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, ...
— Predefined ops only

= Result stored in target buffer
= OQOriginal data stored in result buf

= Different data layouts between
target/origin OK
— Basic type elements must match

=  Atomic get with MPI_NO_OP
= Atomic swap with MPl_REPLACE Origin Target

Advanced MPI, SC14 (11/17/2014)

Remotely
Accessible
Memory

Private
Memory

60



Atomic Data Aggregation: CAS and FOP

MPI Fetch and op(void *origin addr, void *result addr,
MPI Datatype dtype, int target rank,
MPI Aint target disp, , MPI Win win)

MPI Compare and swap(void *origin addr, void *compare addr,
void *result addr, MPI Datatype dtype, int target rank,
MPI Aint target disp, MPI Win win)

= FOP: Simpler version of MPI_Get_accumulate
— All buffers share a single predefined datatype
— No count argument (it’s always 1)

— Simpler interface allows hardware optimization

= CAS: Atomic swap if target value is equal to compare value

Advanced MPI, SC14 (11/17/2014)

61



Ordering of Operations in MPI RMA

= No guaranteed ordering for Put/Get operations
= Result of concurrent Puts to the same location undefined

= Result of Get concurrent Put/Accumulate undefined
— Can be garbage in both cases
= Result of concurrent accumulate operations to the same location
are defined according to the order in which the occurred
— Atomic put: Accumulate with op = MPI_REPLACE
— Atomic get: Get_accumulate with op = MPI_NO_OP
=  Accumulate operations from a given process are ordered by default

— User can tell the MPIl implementation that (s)he does not require ordering
as optimization hint

— You can ask for only the needed orderings: RAW (read-after-write), WAR,
RAR, or WAW

Advanced MPI, SC14 (11/17/2014)

62



RMA Synchronization Models

= RMA data access model
— When is a process allowed to read/write remotely accessible memory?
— When is data written by process X is available for process Y to read?
— RMA synchronization models define these semantics
= Three synchronization models provided by MPI:
— Fence (active target)
— Post-start-complete-wait (generalized active target)

— Lock/Unlock (passive target)

= Data accesses occur within “epochs”
— Access epochs: contain a set of operations issued by an origin process

— Exposure epochs: enable remote processes to update a target’s window
— Epochs define ordering and completion semantics

— Synchronization models provide mechanisms for establishing epochs

e E.g., starting, ending, and synchronizing epochs

Advanced MPI, SC14 (11/17/2014)

63



Fence: Active Target Synchronization

[MPI_Win_fence(int assert, MPI Win win) }

Collective synchronization model

Starts and ends access and exposure PO P1 P2

epochs on all processes in the window
_ _ Fence
All processes in group of “win” do an

MPI_WIN_FENCE to open an epoch

R
Everyone can issue PUT/GET operations :—
to read/write data
S
Everyone does an MPI_WIN_FENCE to
close the epoch Fence
All operations complete at the second

fence synchronization

Advanced MPI, SC14 (11/17/2014) 64



PSCW: Generalized Active Target Synchronization

MPI Win post/start(MPI_ Group grp, int assert, MPI Win win)
MPI Win complete/wait (MPI _Win win)

Like FENCE, but origin and target specify
who they communicate with

Target Origin
Target: Exposure epoch
— Opened with MPI_Win_post Post
— Closed by MPI_Win_wait Start
Origin: Access epoch
— Opened by MPI_Win_start (——
Complete
— Closed by MPI_Win_complete Wait

All synchronization operations may block,
to enforce P-S/C-W ordering

— Processes can be both origins and targets

Advanced MPI, SC14 (11/17/2014) 65



Implementing Stencil Computation with RMA Fence

RMA window

L

T~ Target buffers

PUT r Origin buffers

E =

ind

PUT

el

mEA S
1nd

Advanced MPI, SC14 (11/17/2014) 66



Walkthrough of 2D Stencil Code with RMA

= Code can be downloaded from

www.mcs.anl.gov/~thakur/scld4-mpi-tutorial

Advanced MPI, SC14 (11/17/2014) 67



Lock/Unlock: Passive Target Synchronization

Active Target Mode Passive Target Mode
Post Lock ©

Complete Unlock @
Wait

= Passive mode: One-sided, asynchronous communication
— Target does not participate in communication operation

= Shared memory-like model

Advanced MPI, SC14 (11/17/2014) 68



Passive Target Synchronization

[MPI_Win_lock(int locktype, int rank, int assert, MPI Win win)}

[MPI_Win_unlock(int rank, MPI Win win) }

[MPI_Win_flush/flush_local(int rank, MPI Win win) }

= Lock/Unlock: Begin/end passive mode epoch
— Target process does not make a corresponding MPI call
— Caninitiate multiple passive target epochs to different processes
— Concurrent epochs to same process not allowed (affects threads)
= Lock type
— SHARED: Other processes using shared can access concurrently
— EXCLUSIVE: No other processes can access concurrently
= Flush: Remotely complete RMA operations to the target process

— After completion, data can be read by target process or a different process

= Flush_local: Locally complete RMA operations to the target process

Advanced MPI, SC14 (11/17/2014) 69



Advanced Passive Target Synchronization

[MPI_Win_lock_all(int assert, MPI Win win) }

[MPI_Win_unlock_all (MPI Win win) }

[MPI_Win_flush_all/flush_local_all (MPI Win win) }

= Lock_all: Shared lock, passive target epoch to all other
processes

— Expected usage is long-lived: lock_all, put/get, flush, ..., unlock_all

= Flush_all —remotely complete RMA operations to all
processes

" Flush_local _all —locally complete RMA operations to all
processes

Advanced MPI, SC14 (11/17/2014)

70



Implementing GA-like Computation by RMA Lock/Unlock

Ak
N A =
4 i ) i )
JOET GET atomic ACC GET GET atomic ACC
o — o —
\_ DGEMM ) \_ DGEMM )
local buffer on PO local buffer on P1

Advanced MPI, SC14 (11/17/2014) 71



Code Example

" ga_mpi_ddt rma.c

= Only synchronization from origin processes, no
synchronization from target processes

Advanced MPI, SC14 (11/17/2014)

72



Which synchronization mode should | use, when?

RMA communication has low overheads versus send/recv
— Two-sided: Matching, queuing, buffering, unexpected receives, etc...
— One-sided: No matching, no buffering, always ready to receive

— Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

Active mode: bulk synchronization

— E.g. ghost cell exchange

Passive mode: asynchronous data movement
— Useful when dataset is large, requiring memory of multiple nodes
— Also, when data access and synchronization pattern is dynamic

— Common use case: distributed, shared arrays

Passive target locking mode
— Lock/unlock — Useful when exclusive epochs are needed

— Lock_all/unlock_all — Useful when only shared epochs are needed

Advanced MPI, SC14 (11/17/2014) 73



MPI RMA Memory Model

= MPI-3 provides two memory models:
separate and unified

= MPI-2: Separate Model

Logical public and private copies

MPI provides software coherence between
window copies

Extremely portable, to systems that don’t
provide hardware coherence

= MPI-3: New Unified Model

Single copy of the window
System must provide coherence

Superset of separate semantics
e E.g.allows concurrent local/remote access

Provides access to full performance
potential of hardware

Advanced MPI, SC14 (11/17/2014)

Public

Copy

74



MPI RMA Memory Model (separate windows)

Same source
Same epoch  Diff. Sources

LA WA A \
A AL

\ 3
; ; : ; :
¢ ¢ X $ X
Private
Copy I > T
load store store

= Very portable, compatible with non-coherent memory systems
= Limits concurrent accesses to enable software coherence

Advanced MPI, SC14 (11/17/2014) 75



MPI RMA Memory Model (unified windows)

Same source
Same epoch  Diff. Sources

LN A U A . AN \
s B e A B \

Unified — - )
Copy — B T 7 S
load store store

= Allows concurrent local/remote accesses

= Concurrent, conflicting operations are allowed (not invalid)
— Outcome is not defined by MPI (defined by the hardware)

= Can enable better performance by reducing synchronization

Advanced MPI, SC14 (11/17/2014) 76



MPI RMA Operation Compatibility (Separate)

| load | store | Get | Put | Ac__

Load NOVL NOVL
Get NOVL NOVL
Put NOVL NOVL
Acc novi  [HCVIENGVE

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL - Overlapping operations permitted

NOVL — Nonoverlapping operations permitted
X — Combining these operations is OK, but data might be garbage

Advanced MPI, SC14 (11/17/2014) 77



MPI RMA Operation Compatibility (Unified)

| load | store | Get | Put | Ac__

Load NOVL NOVL
Store NOVL NOVL
Get ~ OVL+NOVL NOVL NOVL
Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL novi  [HCVIENGVE

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL - Overlapping operations permitted
NOVL — Nonoverlapping operations permitted

Advanced MPI, SC14 (11/17/2014) 78



Web Pointers

MPI standard : http://www.mpi-forum.org/docs/docs.html

MPI Forum : http://www.mpi-forum.org/

MPI implementations:
— MPICH : http://www.mpich.org
— MVAPICH : http://mvapich.cse.ohio-state.edu/

— Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

— Microsoft MPIl: www.microsoft.com/en-us/download/details.aspx?id=39961

— Open MPI : http://www.open-mpi.org/
— |IBM MPI, Cray MPI, HP MPI, TH MPI, ...

Several MPI tutorials can be found on the web

Advanced MPI, SC14 (11/17/2014) 183



New Tutorial Books on MPI

SCIENTIFIC SCIENTIFIC

AND AND

ENGINEERING ENGINEERING

COMPUTATION COMPUTATION

SERIES SERIES

Using MPI Using Advanced MPI

Portable Parallel Programming Modern Features of the

with the Message-Passing Interface Message-Passing Interface

third edition

William Gropp

William Gropp Torsten Hoefler

Ewing Lusk Rajeev Thakur

Anthony Skjellum Ewing Lusk

Basic MPI Advanced MPI, including MPI-3

Advanced MPI, SC14 (11/17/2014)




