

Advanced MPI Programming

Tutorial at SC14, November 2014

Latest slides and code examples are available at

www.mcs.anl.gov/~thakur/sc14-mpi-tutorial

Pavan Balaji

Argonne National Laboratory

Email: balaji@mcs.anl.gov

Web: <u>www.mcs.anl.gov/~balaji</u>

William Gropp

University of Illinois, Urbana-Champaign

Email: wgropp@illinois.edu

Web: www.cs.illinois.edu/~wgropp

Torsten Hoefler

ETH Zurich

Email: https://html/>html/>https://html/>ht

Web: <a href="http://http://https://http://h

Rajeev Thakur

Argonne National Laboratory

Email: thakur@mcs.anl.gov

Web: www.mcs.anl.gov/~thakur

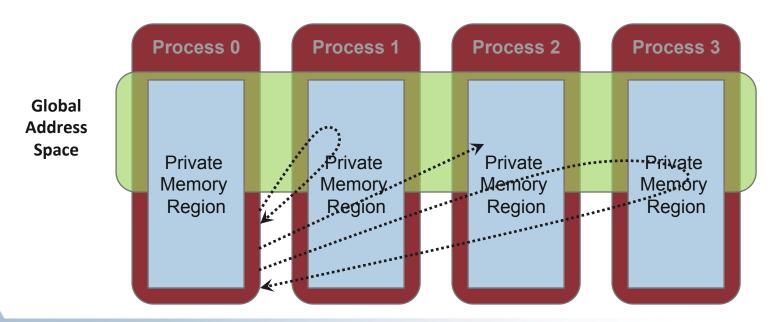
Outline

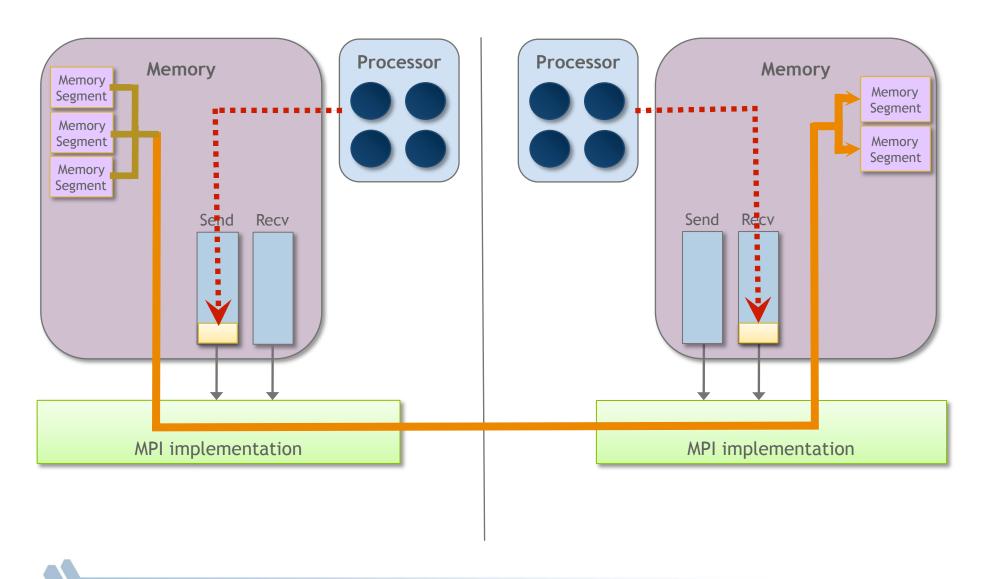
Morning

- Introduction
 - MPI-1, MPI-2, MPI-3
- Running example: 2D stencil code
 - Simple point-to-point version
- Derived datatypes
 - Use in 2D stencil code
- One-sided communication
 - Basics and new features in MPI-3
 - Use in 2D stencil code
 - Advanced topics
 - Global address space communication

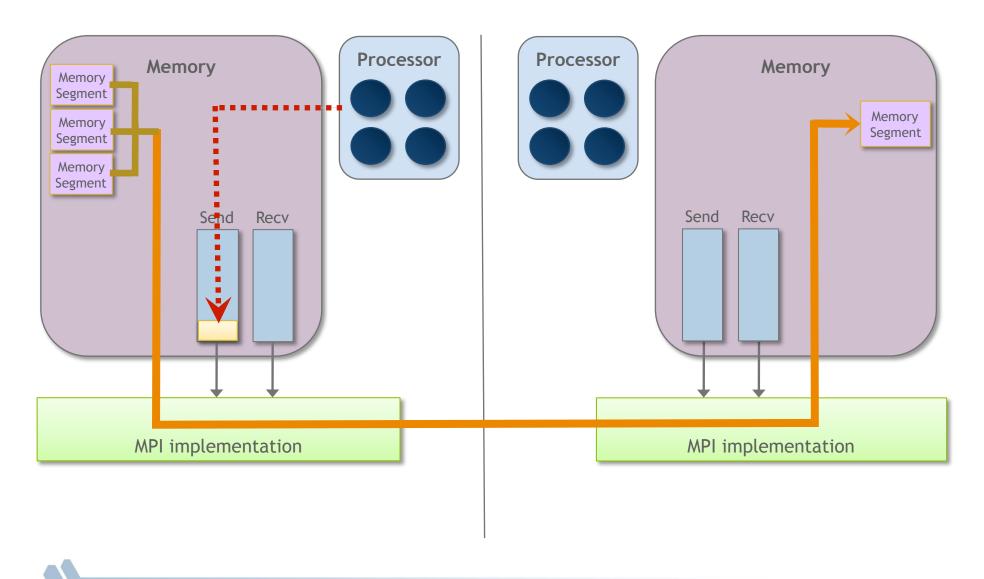
Afternoon

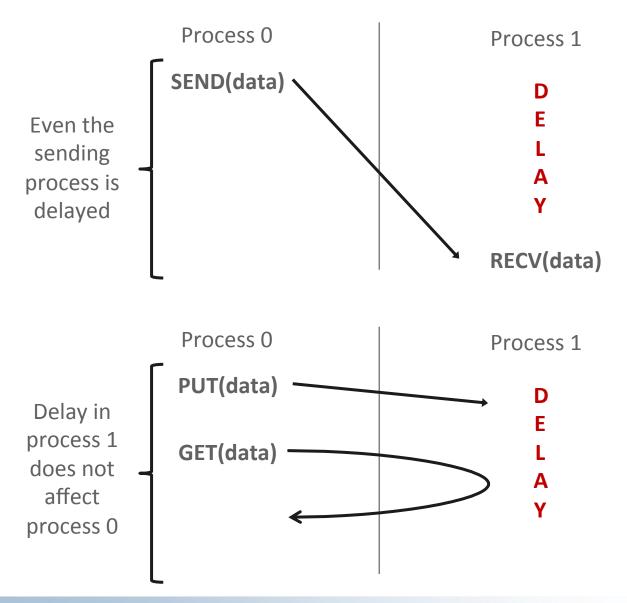
- MPI and Threads
 - Thread safety specification in MPI
 - How it enables hybrid programming
 - Hybrid (MPI + shared memory) version of 2D stencil code
- Nonblocking collectives
 - Parallel FFT example
- Process topologies
 - 2D stencil example
- Neighborhood collectives
 - 2D stencil example
- Recent efforts of the MPI Forum
- Conclusions


Advanced Topics: One-sided Communication



One-sided Communication


- The basic idea of one-sided communication models is to decouple data movement with process synchronization
 - Should be able move data without requiring that the remote process synchronize
 - Each process exposes a part of its memory to other processes
 - Other processes can directly read from or write to this memory


Two-sided Communication Example

One-sided Communication Example

Comparing One-sided and Two-sided Programming

What we need to know in MPI RMA

- How to create remote accessible memory?
- Reading, Writing and Updating remote memory
- Data Synchronization
- Memory Model

Creating Public Memory

- Any memory used by a process is, by default, only locally accessible
 - X = malloc(100);
- Once the memory is allocated, the user has to make an explicit MPI call to declare a memory region as remotely accessible
 - MPI terminology for remotely accessible memory is a "window"
 - A group of processes collectively create a "window"
- Once a memory region is declared as remotely accessible, all processes in the window can read/write data to this memory without explicitly synchronizing with the target process

Window creation models

- Four models exist
 - MPI_WIN_CREATE
 - You already have an allocated buffer that you would like to make remotely accessible
 - MPI_WIN_ALLOCATE
 - You want to create a buffer and directly make it remotely accessible
 - MPI_WIN_CREATE_DYNAMIC
 - You don't have a buffer yet, but will have one in the future
 - You may want to dynamically add/remove buffers to/from the window
 - MPI_WIN_ALLOCATE_SHARED
 - You want multiple processes on the same node share a buffer

MPI_WIN_CREATE

```
MPI_Win_create(void *base, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)
```

- Expose a region of memory in an RMA window
 - Only data exposed in a window can be accessed with RMA ops.
- Arguments:
 - base pointer to local data to expose
 - size
 size of local data in bytes (nonnegative integer)
 - disp_unit local unit size for displacements, in bytes (positive integer)
 - infoinfo argument (handle)
 - commcommunicator (handle)
 - win window (handle)

Example with MPI_WIN_CREATE

```
int main(int argc, char ** argv)
{
    int *a; MPI Win win;
   MPI Init(&argc, &argv);
   /* create private memory */
   MPI Alloc mem(1000*sizeof(int), MPI INFO NULL, &a);
    /* use private memory like you normally would */
    a[0] = 1; a[1] = 2;
   /* collectively declare memory as remotely accessible */
   MPI Win create(a, 1000*sizeof(int), sizeof(int),
                      MPI INFO NULL, MPI COMM WORLD, &win);
   /* Array 'a' is now accessibly by all processes in
     * MPI COMM WORLD */
   MPI Win free (&win);
   MPI Free mem(a);
   MPI Finalize(); return 0;
```

MPI_WIN_ALLOCATE

```
MPI_Win_allocate(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, void *baseptr,

MPI_Win *win)
```

- Create a remotely accessible memory region in an RMA window
 - Only data exposed in a window can be accessed with RMA ops.

Arguments:

- sizesize of local data in bytes (nonnegative integer)
- disp_unit local unit size for displacements, in bytes (positive integer)
- infoinfo argument (handle)
- commcommunicator (handle)
- baseptr pointer to exposed local data
- winwindow (handle)

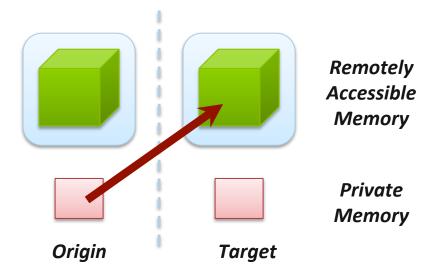
Example with MPI_WIN_ALLOCATE

```
int main(int argc, char ** argv)
    int *a; MPI Win win;
   MPI Init(&argc, &argv);
   /* collectively create remote accessible memory in a window */
   MPI Win allocate (1000*sizeof(int), sizeof(int), MPI INFO NULL,
                     MPI COMM WORLD, &a, &win);
   /* Array 'a' is now accessible from all processes in
     * MPI COMM WORLD */
   MPI Win free(&win);
    MPI Finalize(); return 0;
```

MPI_WIN_CREATE_DYNAMIC

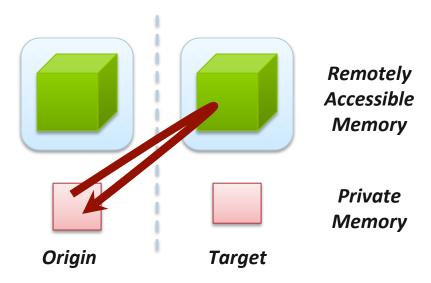
- Create an RMA window, to which data can later be attached
 - Only data exposed in a window can be accessed with RMA ops
- Initially "empty"
 - Application can dynamically attach/detach memory to this window by calling MPI_Win_attach/detach
 - Application can access data on this window only after a memory region has been attached
- Window origin is MPI_BOTTOM
 - Displacements are segment addresses relative to MPI_BOTTOM
 - Must tell others the displacement after calling attach

Example with MPI_WIN_CREATE_DYNAMIC

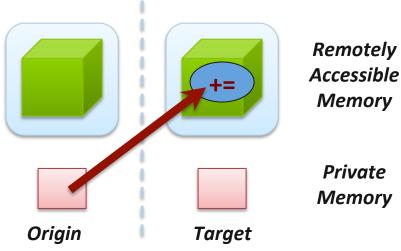

```
int main(int argc, char ** argv)
{
   int *a; MPI Win win;
   MPI Init(&argc, &argv);
   MPI Win create dynamic (MPI INFO NULL, MPI COMM WORLD, &win);
   /* create private memory */
   a = (int *) malloc(1000 * sizeof(int));
   /* use private memory like you normally would */
   a[0] = 1; a[1] = 2;
   /* locally declare memory as remotely accessible */
   MPI Win attach(win, a, 1000*sizeof(int));
   /* Array 'a' is now accessible from all processes */
   /* undeclare remotely accessible memory */
   MPI Win detach(win, a); free(a);
   MPI Win free (&win);
   MPI Finalize(); return 0;
}
```

Data movement

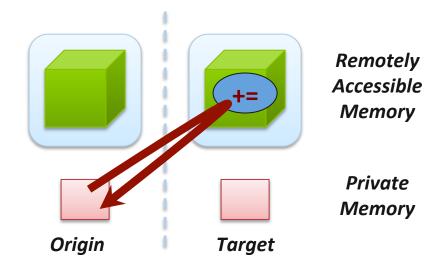
- MPI provides ability to read, write and atomically modify data in remotely accessible memory regions
 - MPI_PUT
 - MPI_GET
 - MPI_ACCUMULATE
 - MPI_GET_ACCUMULATE
 - MPI_COMPARE_AND_SWAP
 - MPI_FETCH_AND_OP


Data movement: Put

- Move data <u>from</u> origin, <u>to</u> target
- Separate data description triples for origin and target


Data movement: Get

Move data <u>to</u> origin, <u>from</u> target


Atomic Data Aggregation: Accumulate

- Atomic update operation, similar to a put
 - Reduces origin and target data into target buffer using op argument as combiner
 - Predefined ops only, no user-defined operations
- Different data layouts between target/origin OK
 - Basic type elements must match
- Op = MPI_REPLACE
 - Implements f(a,b)=b
 - Atomic PUT

Atomic Data Aggregation: Get Accumulate

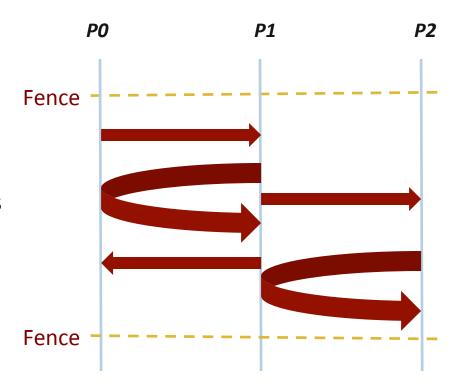
- Atomic read-modify-write
 - Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, ...
 - Predefined ops only
- Result stored in target buffer
- Original data stored in result buf
- Different data layouts between target/origin OK
 - Basic type elements must match
- Atomic get with MPI_NO_OP
- Atomic swap with MPI_REPLACE

Atomic Data Aggregation: CAS and FOP

- FOP: Simpler version of MPI_Get_accumulate
 - All buffers share a single predefined datatype
 - No count argument (it's always 1)
 - Simpler interface allows hardware optimization
- CAS: Atomic swap if target value is equal to compare value

Ordering of Operations in MPI RMA

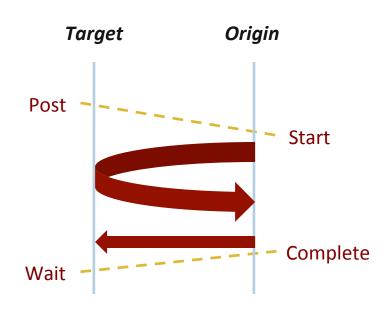
- No guaranteed ordering for Put/Get operations
- Result of concurrent Puts to the same location undefined
- Result of Get concurrent Put/Accumulate undefined
 - Can be garbage in both cases
- Result of concurrent accumulate operations to the same location are defined according to the order in which the occurred
 - Atomic put: Accumulate with op = MPI_REPLACE
 - Atomic get: Get_accumulate with op = MPI_NO_OP
- Accumulate operations from a given process are ordered by default
 - User can tell the MPI implementation that (s)he does not require ordering as optimization hint
 - You can ask for only the needed orderings: RAW (read-after-write), WAR,
 RAR, or WAW

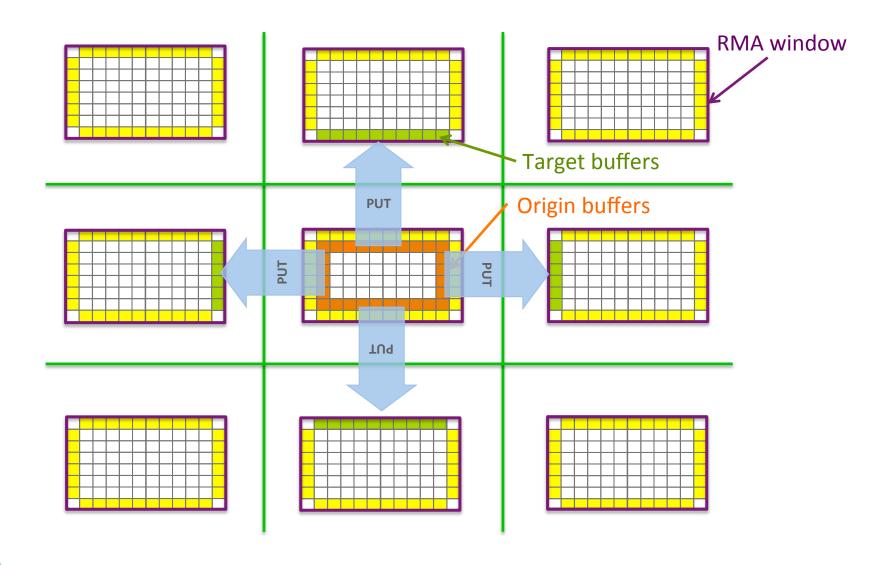

RMA Synchronization Models

- RMA data access model
 - When is a process allowed to read/write remotely accessible memory?
 - When is data written by process X is available for process Y to read?
 - RMA synchronization models define these semantics
- Three synchronization models provided by MPI:
 - Fence (active target)
 - Post-start-complete-wait (generalized active target)
 - Lock/Unlock (passive target)
- Data accesses occur within "epochs"
 - Access epochs: contain a set of operations issued by an origin process
 - Exposure epochs: enable remote processes to update a target's window
 - Epochs define ordering and completion semantics
 - Synchronization models provide mechanisms for establishing epochs
 - E.g., starting, ending, and synchronizing epochs

Fence: Active Target Synchronization

MPI_Win_fence(int assert, MPI_Win win)


- Collective synchronization model
- Starts and ends access and exposure epochs on all processes in the window
- All processes in group of "win" do an MPI_WIN_FENCE to open an epoch
- Everyone can issue PUT/GET operations to read/write data
- Everyone does an MPI_WIN_FENCE to close the epoch
- All operations complete at the second fence synchronization


PSCW: Generalized Active Target Synchronization

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)

- Like FENCE, but origin and target specify who they communicate with
- Target: Exposure epoch
 - Opened with MPI_Win_post
 - Closed by MPI_Win_wait
- Origin: Access epoch
 - Opened by MPI_Win_start
 - Closed by MPI_Win_complete
- All synchronization operations may block, to enforce P-S/C-W ordering
 - Processes can be both origins and targets

Implementing Stencil Computation with RMA Fence

Walkthrough of 2D Stencil Code with RMA

Code can be downloaded from

www.mcs.anl.gov/~thakur/sc14-mpi-tutorial

Lock/Unlock: Passive Target Synchronization

- Passive mode: One-sided, asynchronous communication
 - Target does **not** participate in communication operation
- Shared memory-like model

Passive Target Synchronization

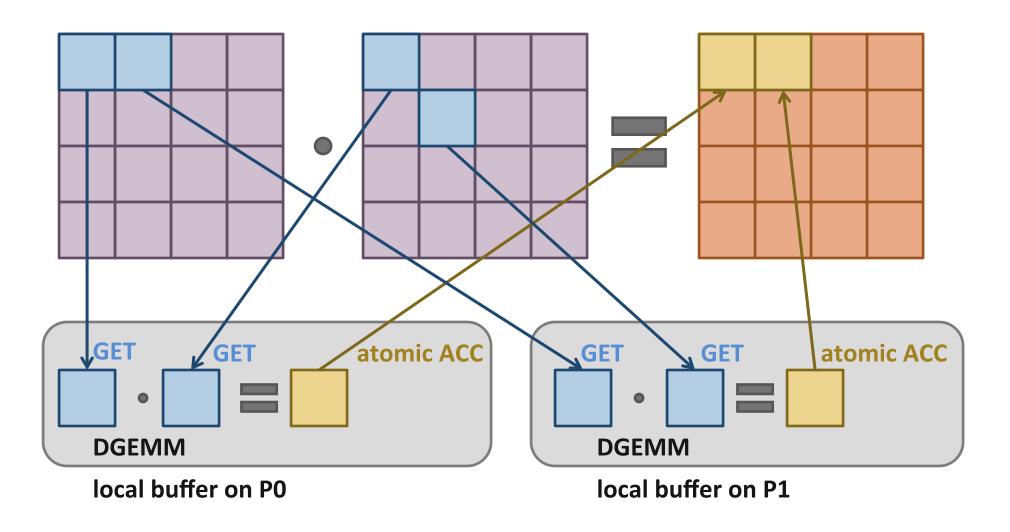
```
MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)
```

- Lock/Unlock: Begin/end passive mode epoch
 - Target process does not make a corresponding MPI call
 - Can initiate multiple passive target epochs to different processes
 - Concurrent epochs to same process not allowed (affects threads)
- Lock type
 - SHARED: Other processes using shared can access concurrently
 - EXCLUSIVE: No other processes can access concurrently
- Flush: Remotely complete RMA operations to the target process
 - After completion, data can be read by target process or a different process
- Flush_local: Locally complete RMA operations to the target process

Advanced Passive Target Synchronization


```
MPI_Win_lock_all(int assert, MPI_Win win)

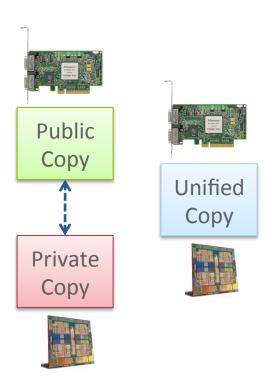
MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)
```

- Lock_all: Shared lock, passive target epoch to all other processes
 - Expected usage is long-lived: lock_all, put/get, flush, ..., unlock_all
- Flush_all remotely complete RMA operations to all processes
- Flush_local_all locally complete RMA operations to all processes

Implementing GA-like Computation by RMA Lock/Unlock

Code Example

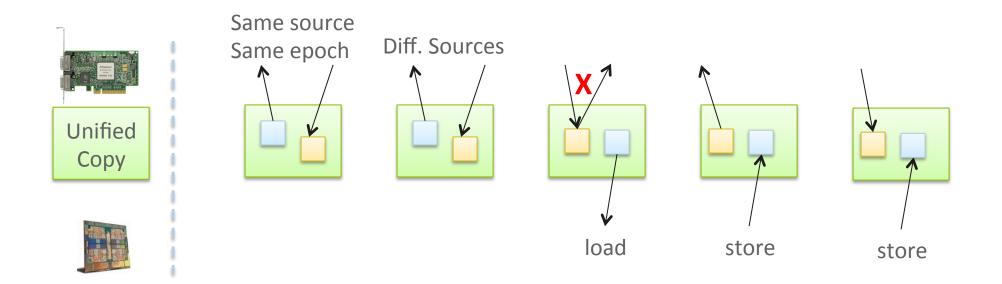

- ga_mpi_ddt_rma.c
- Only synchronization from origin processes, no synchronization from target processes

Which synchronization mode should I use, when?


- RMA communication has low overheads versus send/recv
 - Two-sided: Matching, queuing, buffering, unexpected receives, etc...
 - One-sided: No matching, no buffering, always ready to receive
 - Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)
- Active mode: bulk synchronization
 - E.g. ghost cell exchange
- Passive mode: asynchronous data movement
 - Useful when dataset is large, requiring memory of multiple nodes
 - Also, when data access and synchronization pattern is dynamic
 - Common use case: distributed, shared arrays
- Passive target locking mode
 - Lock/unlock Useful when exclusive epochs are needed
 - Lock_all/unlock_all Useful when only shared epochs are needed

MPI RMA Memory Model

- MPI-3 provides two memory models: separate and unified
- MPI-2: Separate Model
 - Logical public and private copies
 - MPI provides software coherence between window copies
 - Extremely portable, to systems that don't provide hardware coherence
- MPI-3: New Unified Model
 - Single copy of the window
 - System must provide coherence
 - Superset of separate semantics
 - E.g. allows concurrent local/remote access
 - Provides access to full performance potential of hardware



MPI RMA Memory Model (separate windows)

- Very portable, compatible with non-coherent memory systems
- Limits concurrent accesses to enable software coherence

MPI RMA Memory Model (unified windows)

- Allows concurrent local/remote accesses
- Concurrent, conflicting operations are allowed (not invalid)
 - Outcome is not defined by MPI (defined by the hardware)
- Can enable better performance by reducing synchronization

MPI RMA Operation Compatibility (Separate)

	Load	Store	Get	Put	Acc
Load	OVL+NOVL	OVL+NOVL	OVL+NOVL	NOVL	NOVL
Store	OVL+NOVL	OVL+NOVL	NOVL	X	X
Get	OVL+NOVL	NOVL	OVL+NOVL	NOVL	NOVL
Put	NOVL	Χ	NOVL	NOVL	NOVL
Acc	NOVL	Χ	NOVL	NOVL	OVL+NOVL

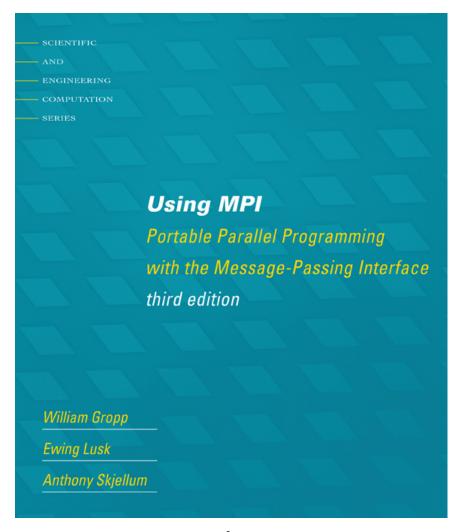
This matrix shows the compatibility of MPI-RMA operations when two or more processes access a window at the same target concurrently.

- OVL Overlapping operations permitted
- NOVL Nonoverlapping operations permitted
- X Combining these operations is OK, but data might be garbage

MPI RMA Operation Compatibility (Unified)

	Load	Store	Get	Put	Acc
Load	OVL+NOVL	OVL+NOVL	OVL+NOVL	NOVL	NOVL
Store	OVL+NOVL	OVL+NOVL	NOVL	NOVL	NOVL
Get	OVL+NOVL	NOVL	OVL+NOVL	NOVL	NOVL
Put	NOVL	NOVL	NOVL	NOVL	NOVL
Acc	NOVL	NOVL	NOVL	NOVL	OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or more processes access a window at the same target concurrently.


OVL — Overlapping operations permitted

NOVL - Nonoverlapping operations permitted

Web Pointers

- MPI standard : http://www.mpi-forum.org/docs/docs.html
- MPI Forum : http://www.mpi-forum.org/
- MPI implementations:
 - MPICH : http://www.mpich.org
 - MVAPICH : http://mvapich.cse.ohio-state.edu/
 - Intel MPI: http://software.intel.com/en-us/intel-mpi-library/
 - Microsoft MPI: <u>www.microsoft.com/en-us/download/details.aspx?id=39961</u>
 - Open MPI : http://www.open-mpi.org/
 - IBM MPI, Cray MPI, HP MPI, TH MPI, ...
- Several MPI tutorials can be found on the web.

New Tutorial Books on MPI

SCIENTIFIC COMPUTATION **Using Advanced MPI** Modern Features of the Message-Passing Interface William Gropp Torsten Hoefler Rajeev Thakur Ewing Lusk

Basic MPI

Advanced MPI, including MPI-3