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Advanced Topics: One-sided Communication
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One-sided Communication

= The basic idea of one-sided communication models is to
decouple data movement with process synchronization

— Should be able move data without requiring that the remote process
synchronize

— Each process exposes a part of its memory to other processes

— Other processes can directly read from or write to this memory
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Two-sided Communication Example
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One-sided Communication Example
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MPI implementation MPI implementation
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Comparing One-sided and Two-sided Programming
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What we need to know in MPlI RMA

"= How to create remote accessible memory?
= Reading, Writing and Updating remote memory

= Data Synchronization

= Memory Model
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Creating Public Memory

= Any memory used by a process is, by default, only locally
accessible

— X =malloc(100);

= Once the memory is allocated, the user has to make an

explicit MPI call to declare a memory region as remotely
accessible
— MPI terminology for remotely accessible memory is a “window”

— A group of processes collectively create a “window”

= Once a memory region is declared as remotely accessible, all
processes in the window can read/write data to this memory
without explicitly synchronizing with the target process
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Window creation models

Four models exist

MPI_WIN_CREATE

e You already have an allocated buffer that you would like to make
remotely accessible

MPI_WIN_ALLOCATE

e You want to create a buffer and directly make it remotely accessible

MPI_WIN_CREATE_DYNAMIC
e You don’t have a buffer yet, but will have one in the future

e You may want to dynamically add/remove buffers to/from the window

MPI_WIN_ALLOCATE_SHARED

e You want multiple processes on the same node share a buffer
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MPI_WIN_CREATE

MPI Win create(void *base, MPI Aint size,
int disp unit, MPI Info info,

MPI Comm comm, MPI Win *win)

= Expose a region of memory in an RMA window

Only data exposed in a window can be accessed with RMA ops.

= Arguments:

base - pointer to local data to expose
Size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)

info - info argument (handle)
comm - communicator (handle)
win - window (handle)
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Example with MPI_WIN_CREATE

int main(int argc, char ** argv)

{

int *a; MPI_Win win;
MPI Init(&argc, &argv);

/* create private memory */

MPI Alloc mem(1000*sizeof(int), MPI_ INFO NULL, &a);
/* use private memory like you normally would */
af[0] = 1; a[l] = 2;

/* collectively declare memory as remotely accessible */
MPI Win create(a, 1000*sizeof(int), sizeof(int),
MPI_INFO NULL, MPI_COMM WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM WORLD */

MPI_Win_free(&win);

MPI Free mem(a) ;
MPI Finalize(); return O;
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MPI_WIN_ALLOCATE

MPI Win allocate(MPI_Aint size, int disp unit,
MPI Info info, MPI Comm comm, void *baseptr,
MPI Win *win)

= Create a remotely accessible memory region in an RMA window

Only data exposed in a window can be accessed with RMA ops.

= Arguments:

size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
info - info argument (handle)

comm - communicator (handle)

baseptr - pointer to exposed local data

win - window (handle)

Advanced MPI, SC14 (11/17/2014)

52



Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{
int *a; MPI Win win;
MPI Init(&argc, &argv);
/* collectively create remote accessible memory in a window */
MPI Win allocate(1000*sizeof(int), sizeof(int), MPI INFO NULL,
MPI_COMM WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM WORLD */

MPI_Win_free(&win);

MPI Finalize(); return O;
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MPI_WIN_CREATE_DYNAMIC

MPI Win create dynamic (MPI_ Info info, MPI Comm comm,
MPI Win *win)

= Create an RMA window, to which data can later be attached
— Only data exposed in a window can be accessed with RMA ops
= |nitially “empty”

— Application can dynamically attach/detach memory to this window by
calling MPI_Win_attach/detach

— Application can access data on this window only after a memory
region has been attached

= Window origin is MPI_BOTTOM
— Displacements are segment addresses relative to MPI_BOTTOM

— Must tell others the displacement after calling attach
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Example with MPI_WIN_CREATE_DYNAMIC

int main(int argc, char ** argv)

{

int *a; MPI_Win win;

MPI Init(&argc, &argv);
MPI Win create dynamic (MPI_INFO NULL, MPI_COMM WORLD, &win);

/* create private memory */
a = (int *) malloc (1000 * sizeof (int)) ;
/* use private memory like you normally would */

a[0] =1; a[l] = 2;

/* locally declare memory as remotely accessible */
MPI Win attach(win, a, 1000*sizeof (int))

/* Array ‘a’ is now accessible from all processes */
/* undeclare remotely accessible memory */
MPI Win detach(win, a); free(a);

MPI_Win:free(&win);

MPI Finalize(); return O;

Advanced MPI, SC14 (11/17/2014) 55



Data movement

= MPI provides ability to read, write and atomically modify data

in remotely accessible memory regions

MPI_PUT

MPI_GET
MPI_ACCUMULATE
MPI_GET_ACCUMULATE
MPI_COMPARE_AND_SWAP
MPI_FETCH_AND_OP
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Data movement: Put

MPI Put(void *origin addr, int origin_ count,

MPI Aint target disp, int target count,

\_ MPI Datatype target dtype, MPI Win win)

~

MPI Datatype origin dtype, int target rank,

J

= Move data from origin, to target

= Separate data description triples for origin and target

Origin Target
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Data movement: Get

MPI Get(void *origin addr, int origin_ count,

MPI Aint target disp, int target count,

\_ MPI Datatype target dtype, MPI Win win)

MPI Datatype origin dtype, int target rank,

~

J

"= Move data to origin, from target

Origin Target
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\.__________________
Atomic Data Aggregation: Accumulate
4 )

MPI Accumulate(void *origin_addr, int origin_count,

MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,
\_ MPI Datatype target dtype, , MPI Win win) )

= Atomic update operation, similar to a put

— Reduces origin and target data into target buffer using op argument as
combiner

— Predefined ops only, no user-defined operations

= Different data layouts between

o Remotely
target/origin OK Accessible
— Basic type elements must match Memory
= Op=MPI_REPLACE ,
— Private
— Implements f(a,b)=b Memory

— Atomic PUT Origin Target
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Atomic Data Aggregation: Get Accumulate

€

MPI Datatype origin dtype, void *result addr,
int result count, MPI Datatype result dtype,
int target rank, MPI Aint target disp,

int target count, MPI Datatype target dype,
\ , MPI Win win)

PI_ Get accumulate (void *origin_addr, int origin_count\

14

/

= Atomic read-modify-write
— Op =MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, ...
— Predefined ops only

= Result stored in target buffer
= OQOriginal data stored in result buf

= Different data layouts between
target/origin OK
— Basic type elements must match

=  Atomic get with MPI_NO_OP
= Atomic swap with MPl_REPLACE Origin Target

Advanced MPI, SC14 (11/17/2014)

Remotely
Accessible
Memory

Private
Memory

60



Atomic Data Aggregation: CAS and FOP

MPI Fetch and op(void *origin addr, void *result addr,
MPI Datatype dtype, int target rank,
MPI Aint target disp, , MPI Win win)

MPI Compare and swap(void *origin addr, void *compare addr,
void *result addr, MPI Datatype dtype, int target rank,
MPI Aint target disp, MPI Win win)

= FOP: Simpler version of MPI_Get_accumulate
— All buffers share a single predefined datatype
— No count argument (it’s always 1)

— Simpler interface allows hardware optimization

= CAS: Atomic swap if target value is equal to compare value
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Ordering of Operations in MPI RMA

= No guaranteed ordering for Put/Get operations
= Result of concurrent Puts to the same location undefined

= Result of Get concurrent Put/Accumulate undefined
— Can be garbage in both cases
= Result of concurrent accumulate operations to the same location
are defined according to the order in which the occurred
— Atomic put: Accumulate with op = MPI_REPLACE
— Atomic get: Get_accumulate with op = MPI_NO_OP
=  Accumulate operations from a given process are ordered by default

— User can tell the MPIl implementation that (s)he does not require ordering
as optimization hint

— You can ask for only the needed orderings: RAW (read-after-write), WAR,
RAR, or WAW
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RMA Synchronization Models

= RMA data access model
— When is a process allowed to read/write remotely accessible memory?
— When is data written by process X is available for process Y to read?
— RMA synchronization models define these semantics
= Three synchronization models provided by MPI:
— Fence (active target)
— Post-start-complete-wait (generalized active target)

— Lock/Unlock (passive target)

= Data accesses occur within “epochs”
— Access epochs: contain a set of operations issued by an origin process

— Exposure epochs: enable remote processes to update a target’s window
— Epochs define ordering and completion semantics

— Synchronization models provide mechanisms for establishing epochs

e E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

[MPI_Win_fence(int assert, MPI Win win) }

Collective synchronization model

Starts and ends access and exposure PO P1 P2

epochs on all processes in the window
_ _ Fence
All processes in group of “win” do an

MPI_WIN_FENCE to open an epoch

R
Everyone can issue PUT/GET operations :—
to read/write data
S
Everyone does an MPI_WIN_FENCE to
close the epoch Fence
All operations complete at the second

fence synchronization
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PSCW: Generalized Active Target Synchronization

MPI Win post/start(MPI_ Group grp, int assert, MPI Win win)
MPI Win complete/wait (MPI _Win win)

Like FENCE, but origin and target specify
who they communicate with

Target Origin
Target: Exposure epoch
— Opened with MPI_Win_post Post
— Closed by MPI_Win_wait Start
Origin: Access epoch
— Opened by MPI_Win_start (——
Complete
— Closed by MPI_Win_complete Wait

All synchronization operations may block,
to enforce P-S/C-W ordering

— Processes can be both origins and targets
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Implementing Stencil Computation with RMA Fence

RMA window

L

T~ Target buffers

PUT r Origin buffers

E =

ind

PUT

el

mEA S
1nd
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Walkthrough of 2D Stencil Code with RMA

= Code can be downloaded from

www.mcs.anl.gov/~thakur/scld4-mpi-tutorial

Advanced MPI, SC14 (11/17/2014) 67



Lock/Unlock: Passive Target Synchronization

Active Target Mode Passive Target Mode
Post Lock ©

Complete Unlock @
Wait

= Passive mode: One-sided, asynchronous communication
— Target does not participate in communication operation

= Shared memory-like model
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Passive Target Synchronization

[MPI_Win_lock(int locktype, int rank, int assert, MPI Win win)}

[MPI_Win_unlock(int rank, MPI Win win) }

[MPI_Win_flush/flush_local(int rank, MPI Win win) }

= Lock/Unlock: Begin/end passive mode epoch
— Target process does not make a corresponding MPI call
— Caninitiate multiple passive target epochs to different processes
— Concurrent epochs to same process not allowed (affects threads)
= Lock type
— SHARED: Other processes using shared can access concurrently
— EXCLUSIVE: No other processes can access concurrently
= Flush: Remotely complete RMA operations to the target process

— After completion, data can be read by target process or a different process

= Flush_local: Locally complete RMA operations to the target process
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Advanced Passive Target Synchronization

[MPI_Win_lock_all(int assert, MPI Win win) }

[MPI_Win_unlock_all (MPI Win win) }

[MPI_Win_flush_all/flush_local_all (MPI Win win) }

= Lock_all: Shared lock, passive target epoch to all other
processes

— Expected usage is long-lived: lock_all, put/get, flush, ..., unlock_all

= Flush_all —remotely complete RMA operations to all
processes

" Flush_local _all —locally complete RMA operations to all
processes

Advanced MPI, SC14 (11/17/2014)
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Implementing GA-like Computation by RMA Lock/Unlock

Ak
N A =
4 i ) i )
JOET GET atomic ACC GET GET atomic ACC
o — o —
\_ DGEMM ) \_ DGEMM )
local buffer on PO local buffer on P1
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Code Example

" ga_mpi_ddt rma.c

= Only synchronization from origin processes, no
synchronization from target processes

Advanced MPI, SC14 (11/17/2014)
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Which synchronization mode should | use, when?

RMA communication has low overheads versus send/recv
— Two-sided: Matching, queuing, buffering, unexpected receives, etc...
— One-sided: No matching, no buffering, always ready to receive

— Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

Active mode: bulk synchronization

— E.g. ghost cell exchange

Passive mode: asynchronous data movement
— Useful when dataset is large, requiring memory of multiple nodes
— Also, when data access and synchronization pattern is dynamic

— Common use case: distributed, shared arrays

Passive target locking mode
— Lock/unlock — Useful when exclusive epochs are needed

— Lock_all/unlock_all — Useful when only shared epochs are needed
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MPI RMA Memory Model

= MPI-3 provides two memory models:
separate and unified

= MPI-2: Separate Model

Logical public and private copies

MPI provides software coherence between
window copies

Extremely portable, to systems that don’t
provide hardware coherence

= MPI-3: New Unified Model

Single copy of the window
System must provide coherence

Superset of separate semantics
e E.g.allows concurrent local/remote access

Provides access to full performance
potential of hardware

Advanced MPI, SC14 (11/17/2014)
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MPI RMA Memory Model (separate windows)

Same source
Same epoch  Diff. Sources

LA WA A \
A AL

\ 3
; ; : ; :
¢ ¢ X $ X
Private
Copy I > T
load store store

= Very portable, compatible with non-coherent memory systems
= Limits concurrent accesses to enable software coherence
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MPI RMA Memory Model (unified windows)

Same source
Same epoch  Diff. Sources

LN A U A . AN \
s B e A B \

Unified — - )
Copy — B T 7 S
load store store

= Allows concurrent local/remote accesses

= Concurrent, conflicting operations are allowed (not invalid)
— Outcome is not defined by MPI (defined by the hardware)

= Can enable better performance by reducing synchronization
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MPI RMA Operation Compatibility (Separate)

| load | store | Get | Put | Ac__

Load NOVL NOVL
Get NOVL NOVL
Put NOVL NOVL
Acc novi  [HCVIENGVE

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL - Overlapping operations permitted

NOVL — Nonoverlapping operations permitted
X — Combining these operations is OK, but data might be garbage
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MPI RMA Operation Compatibility (Unified)

| load | store | Get | Put | Ac__

Load NOVL NOVL
Store NOVL NOVL
Get ~ OVL+NOVL NOVL NOVL
Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL novi  [HCVIENGVE

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL - Overlapping operations permitted
NOVL — Nonoverlapping operations permitted
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Web Pointers

MPI standard : http://www.mpi-forum.org/docs/docs.html

MPI Forum : http://www.mpi-forum.org/

MPI implementations:
— MPICH : http://www.mpich.org
— MVAPICH : http://mvapich.cse.ohio-state.edu/

— Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

— Microsoft MPIl: www.microsoft.com/en-us/download/details.aspx?id=39961

— Open MPI : http://www.open-mpi.org/
— |IBM MPI, Cray MPI, HP MPI, TH MPI, ...

Several MPI tutorials can be found on the web
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New Tutorial Books on MPI

SCIENTIFIC SCIENTIFIC

AND AND

ENGINEERING ENGINEERING

COMPUTATION COMPUTATION

SERIES SERIES

Using MPI Using Advanced MPI

Portable Parallel Programming Modern Features of the

with the Message-Passing Interface Message-Passing Interface

third edition

William Gropp

William Gropp Torsten Hoefler

Ewing Lusk Rajeev Thakur

Anthony Skjellum Ewing Lusk

Basic MPI Advanced MPI, including MPI-3
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