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Abstract: In this study the work presents the system de-
signed for automated load balancing of the contributor
by analysing the load of compute nodes and the subse-
quent migration of virtual machines from loaded nodes to
less loaded ones. This system increases the performance
of cluster nodes and helps in the timely processing of data.
A grid system balances the work of cluster nodes the rele-
vance of the system is the award of multi-agent balancing
for the solution of such problems.

Keywords: dynamic load balancing, jade, hadoop-Map re-
duce, grid systems, multi-agent systems

1 Introduction
Current research is motivated by a chapter on Hadoop-
MapReduce framework presented by Google used for par-
allel computations over very large, several petabytes, data
sets in computer clusters. In this work, the work led to
conduct practical experiment and pursuits two objectives.
First of all theoretical studies emphasize, that volunteer
computing promises considerable increase in the system
dependability due to self-organization phenomena. That
is Hadoop-MapReduce platform, which more likely ex-
ists to �nish execution when unexpected node failure ac-
crues or nodes leave infrastructure unpredictably at a run
time. Furthermore, the study supports the argument by
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conducting computational experiment and presenting de-
rived practical data. Secondly, in this work analyses work-
load distribution within complex computing infrastruc-
ture were performed. The system complexity in this case
comes from viewing computing architecture as a collec-
tion of autonomous devices, which encapsulate control
and goal achieving functions [1]. As a result, devices are
not viewed as means of achieving targets, but as active
components that solve users de�ned problems by self-
organizing and cooperating. In addition, the systembrings
additional complexity by integrating mobile devices as
processing units into the computing infrastructure. As a
result, agent accepts mapper and reducer roles with re-
spect to its subjective self-evaluation. Thus, device capa-
bilities are analysed and decisions are made dynamically
at a run time in a decentralized fashion. The structure of
the presented article is organized as follows: Section 2 de-
scribesHadoop-MapReduce architecture and implementa-
tion, Section 3 de�nes the workload distribution function
that serves as agent decision making tool, while section
4 shows multi-agent dynamic cluster load balancing. Fi-
nally, Sections 5 and 6 present computational experiment
results and conclusions to the work carried out.

2 Hadoop-Mapreduce platform
In order to implement and test Hadoop-MapReduce plat-
form in the study it is proposed the architecture, described
in Subsection 2.1. The core of the framework is the high
degree of machine autonomy, which is not limited to free-
dom of accepting or rejecting tasks, but also includes the
right to independently change roles from execution to ex-
ecution; or take numerous roles (reducer and supervi-
sor) at the same time. Agents in this case carry organiza-
tional and managerial responsibilities. Computing node
intercommunications are governed by agents social in-
teractions, thus, general system architecture fully relies
on Hadoop-MapReduce principles. There are several dis-
tinctions from existing architectures. Unlike in the work
presented by Gangeshwari et al. [2], where study shows
multiple data centres (agent supervised) into a hyper cu-

Unauthenticated
Download Date | 4/25/19 11:08 AM

https://doi.org/10.1515/eng-2017-0054


486 | M.N. Satymbekov, I.T. Pak, L. Naizabayeva, and Ch.A. Nurzhanov

bic structure, we view every machine as an autonomous
entity. Hyper cube agents carry supervisory functions for
data centre infrastructures with pre-installed MapReduce
software. Decision making is made on the level of organi-
zation, that is accepting or rejecting jobs and optimizing
communications. In the current approach machines self-
organize actually perform MapReduce jobs without being
pre-organized into any structures.Moreover, themachines
do not require installing additional MapReduce software.
In the work [3] computing devices (run by agents) are as-
signed master or slave roles and then master nodes coop-
erate to organize and manage e�ective job execution. One
master node communicates with the user and organizes
task execution, whilst other master nodes monitor it and
voluntarily take on control if it fails. Slaves are assigned
map and reduce operations by an active master node, ex-
ecute code and return the result to the master. Hadoop-
MapReduce principles, in this case, are implemented to
manage master node failure, whilst slave nodes are be-
ing controlled. In our approach there is no direct control
mechanism, but localized supervision in a formof reducer-
mapper and supervisor-reducer relationships. This means
that no node has direct control over others, but may in-
directly in�uence execution �ow. In such a way we apply
the complexity prism and design a system that makes use
of agent autonomy in a broader way. In the study the at-
tention has been paid to the other volunteer MapReduce
architectures [4] and [5], which, however, do not make use
of agent-oriented approach. Reminder of the section de-
scribes system architecture and its current implementa-
tion in more details.

2.1 Architecture

The presented system in this work consists of multiple
nodes that interact in order to perform MapReduce jobs.
Every node may initiate user task, or perform any task of-
fered to it. Process is visualized in Fig. 1. Broker node re-
ceives job speci�cation from the user, brakes it into reduce
and map tasks and broad-casts information messages to
potential performers (Fig. 1). Having received a broadcast
message, other nodes evaluate it and issue an o�er or do
not respond to information message at all. Broker chooses
between potential performers on the basis of o�er price
and readiness to become reducer node, where the lowest
o�er (or the �rst lowest o�er received, if there is a num-
ber of them) wins. Chosen performer obtains con�rmation
message and searching for supervisors to serve as active
backup entities for the execution time. Their primary role
is to monitor reducer actions, save peer state and, if un-

Figure 1: UML Sequence Diagram describes agent interactions when
performing a job.

expected failure accrues, to restart it in the last available
state. When supervision is set, performer requests the job,
gets reducer status and searches for mappers and leaf the
reducer nodes by following the same protocol. In such a
way nodes self-organize in a tree structure until the last
required node is added to the tree structure (Fig. 2).

The reducer nodes serve as a core of the tree structure,
whilst mapper nodes do not have leaf nodes at all. This
means that every reducer node tries to �nd leaf reducer
and if none is fount, tree development terminates. Number
of mapper nodes per reducer is set by system developer, as
well as number of supervisors required per reducer. One
supervisor may supervise numerous reducers and take on
mapper or reducer roles at the same time depending on
self-evaluation results. Job execution terminates when all
mapper nodes pass their results to corresponding reducers
and all reducers in a hierarchy pass processed results up
to the level of the broker node. It is also remarkable that
the broker agent does not have any mapper nodes, but ev-
ery reducer node does. Supervisors monitor reducer nodes
and reducers carry out supervision role for their mapper
nodes. On thenode level there are threemain components:
broker agent, performer agent and compiler/interpreter.
When node receives a broadcast message, it is handled by
the performer agent. Performer agent evaluates nodes cur-
rent state and makes a decision whether to form an o�er
message or to do nothing. If an o�er is issued to the re-
questing node, performer is responsible for handling up-
comingoperations. That is �nding supervisors, passing ex-
ecutable code to the interpreter/compiler, retrieving exe-
cution results and sending them to the destination. The
broker agent is created by interpreter/compiler when user
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Figure 2: Diagram describes MapReduce tree structure that is
formed by peer nodes before reduce operation begins.

Figure 3: UML Class Diagram describing nodes com- posite struc-
ture, their roles and relationship with user interface.

wants to launch a computing task. It is responsible for
broadcasting information messages, �nding itself super-
visor and the reducer nodes and handling organizational
communication at execution time. Fig. 3 presents class di-
agram, which visualizes nodes structure, system roles and
their relationship to the user interface.

2.2 Implementation

The study implemented system prototype using JADE [6]
due to cross platform properties and well established de-
velopment Java tools. Moreover, availability of standard
Jade behaviours allowed convenient grouping of individ-
ual operations using parallel behaviour and Sequential
Behaviour classes, supplied in JADE-4.2.0 distribution. Ex-
ecutable code (written in Lisp) is encapsulated into ACL

message object and passed between the agents. The code
is executed on Java Virtual Machine using Clojure-1.4 (PC
and server machines). The agent initialization includes
publishing two advertisements: �rst, supervision services,
second, MapReduce services. As noted before there is no
pre-de�ned mapper or reducer role, because it depends
on self-evaluation at execution time. Supervisor does not
copy reducer state directly, but knows about changes by
listening to duplicated messages, sent to the reducer. In
other words it updates state record when receives mapper
and leaf reducer message duplicates. In order to describe
job submission and failure recovery mechanisms the ex-
ample scenario that corresponds to the algorithm is de-
scribed in Fig. 4.
1. All agents register their supervision and execution ser-

vices using DFAgent description class;
2. When job arrives the broker agent breaks it down

intomap and reduce operations and launches initiate-
Executionbehaviour,which is an extensionof the Jade
Behaviour;

3. When perspective performer receives o�er it decides
to execute the reduce task or not. If decision is posi-
tive, the agent instantiates Sequential Behaviour ob-
ject with unique CoversationId;

4. Broker tracks best o�er among received within speci-
�ed timeout and sends con�rmation;

5. Perspective performer becomes reducer node and
searches for supervisors by broadcastingACLMessage
INFORM.Whenanswers are received�rst three answer
owners become supervisors and their addresses are
put into o�er Message. Then o�er Message is broad-
casted to a new potential performers;

6. Supervisors monitor their reduce node. If a call time-
out is reached, supervisor tries to re-launch the agent.
If host is unreachable, supervisor tries to assign the
task to other host at last reducer state;

7. When reducer receives mapper and leaf reducer re-
sults it uses provided reduce code and data by pass-
ing it to the Clojure compiler or scheme interpreter for
execution. Result is encapsulated and returned to the
speci�ed destination;

3 Workload Distribution Function
The task of distribution function is carried out to distribute
workload between computing nodes as even as possible.
Formally, it may be speci�ed as follows.

Let us denote executable task by J and its step by k,
such as J = {k1, k2, . . . , kn}, where all steps are performed
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by a set of computing nodes A = {a1, a2, a3, . . . , an}. k in
this case is an uninterrupted process which is performed
according to its speci�cation. If step kn may be performed
bynode am,denotedhere as amapping function kn → am.

Workload distribution means that mappings between
di�erent nodes in A should be distributed as even, as pos-
sible. Let us use price as a derivative of available resources,
workload and other parameters, which re�ects compara-
tive workload of individual device. As a result, every suc-
cessful mapping ki → aj(1 ≤ i ≤ n, 1 ≤ j ≤ m) gets comput-
ing price pijk assigned by an accepting computing node.
Following is the price function:

pijk = f (ωk , pb , bl) (1)

Here, pb denotes basic resource price, which is set by de-
vice owner; bl denotes battery load; and ωk denotes re-
sources availability at the time,when step k arrives.ωk has
following descrete values:

ωk


1 device free, can map and reduce
0.6 device busy, can map and reduce
0.3 device can map only
0 otherwise

(2)

Computed price for di�erent mappingsmay not be the
same pijk ≠ pijk where i ≠ l and 1 ≤ i, l ≤ m. If they are
equal, the con�ict is resolved on the �rst come �rst served
basis. ((p(ωijk)), pijk) is return to initiator node, where pijk
is computer price and p(ijk) is determined as follows:

ρωk =
{

1 ωijk > 0, want to supply services
0 otherwise

Then, issuer returns result of function φ(pijk), which de-
termines executor node.

φ(ωijk) =
{

1 ωijk = 1, pijk of k → ai lowest
0 otherwise

also, includes client balance cb value in order to rep-
resent the amount of money user can spend on services.

Using values stated above distribution function is for-
mulated as follows:

min
p

n∑
n=1

p(ωijk)φ(pijk) (3)

Subject to:
n∑
n=1

p(ωijk)φ(pijk) ≤ cb (4)

n∑
n=1

p(ωijk)φ(pijk) > 0 (5)

The objective function (2) minimizes overall cost of
performingMapReduce job by choosing the lowest price at
each step. Constraints ensure that overall solution cost is
always lower than client balance (3) and at least one path
of job execution exists (4). The objective function is imple-
mented as an aim of every agent to choose cheapest o�er
available. In its turn, o�er is a derivative of unused physi-
cal resources of the host device. In such away it is ensured
that next step performer is the one, who has bigger propor-
tion of free resources.

4 Dynamic cluster load balancing
The above distribution function solves the problem of dis-
tributing data to compute nodes. Computing nodes can
have di�erent characteristics that will lead to the load of
cluster nodes. This section is aimed at dynamic load bal-
ancing between cluster nodes. The problem of balancing
the computational load of a distributed application arises
because:
1. the structure of the distributed application is hetero-

geneous, di�erent logical processes require di�erent
computational capacities;

2. The structure of a computational complex (for exam-
ple, a cluster) is also heterogeneous, i.e. Di�erent com-
puting nodes have di�erent performance;;

3. the interstitial interaction structure is not homoge-
neous; The communication lines connecting nodes
can have di�erent characteristics of throughput.

4.1 Multi-agent dynamic load balancing
system

The dynamic balancing system is multi-agent; it consists
of a set of agents of di�erent types:
– Agent-sensor of the computing node;
– The sensor agent of the simulation model;
– The agent of analysis;
– The migration agent;
– Distribution agent

Agents of each type act according to their scenario to
achieve the goal, and together they realize the balancing
of the distributed simulation model. Agents are hardware
and software entities, they can act autonomously. Agents
interact with each other and with the external environ-
ment.

Agents can be de�ned as follows: Agent =<
S, E� , Prog., I, O, R,M, R, E, G, B > where,
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Figure 4: The architecture of the multi-agent balanc- ing system.

1. Sense are the agent’s sensors, the functions by which
the agent receives information about the external en-
vironment.

2. e� - e�ectors, functions bywhich the agent acts on the
external environment.

3. Prog: donates PO donates transformation of the input
information (I) into the output (O).

4. MR donates meta-correction,
5. R donates the rules by which the agent acts (meta-

rules and rulesAre characteristic for cognitive agents).
6. E donates the external environment (computing envi-

ronment: network, multiprocessor computer, cluster,
GRID).

7. G donates the target that the agent is trying to reach.
8. B donates broker agent.

The agents of analysis and distribution are de�ned as cog-
nitive. The agents sensors and migration agent are reac-
tive. In Fig. 1 the architecture of the balancing system at
each node is presented. The user, based on the knowledge
of the model (knowing how themodel should work), mod-
i�es the balancing rules. Based on these rules, the agents
will decide to move the model objects from one comput-
ing node to the another. At each compute node, there are
�ve di�erent types of agents. Let us consider in detail the
signi�cance of each of them. The agent-sensor of the com-
puter system collects the required data about the state
of the computing node. Among these data: the load on
the compute nodes, the load of the communication lines.
When collecting information, use performance counters.
The sensor agent of the simulation model monitors the
change in the state of the imitation model objects located
on the node. As data that the sensor agent delivers as the
output information the frequency of the event, the fre-
quency of receiving and sending messages from the poles,
the frequency of the state change. The analysis agent in-
terrogates the analysis agents at certain intervals, decides

(using the rules), whether there is a need for balancing. If
this is the case, then the distribution agent is contacted.
The distribution agent is the source of "knowledge" about
the surrounding environment (neighbour objects located
on neighbouring computational nodes, statistical infor-
mation about neighbouring nodes) for the analysis agent.
This knowledge is intended to clarify the rules, guided by
which the agent decides on the need for balancing. The
broker agent controls with all agents and controls the op-
eration of nodes, when the node completed its part of the
work. The broker agent takes part of the task from the other
node and mixes it to a free node. Thus, the entire node al-
ways is in process. The rule-based distribution agent (the
set R) decides which model objects need to transfer, and
selects the target network nodes.

The distribution agent, by selecting the objects for a
transfer to other computingnodes, refers to the neighbour-
ing distribution agents. Next, the distribution agents are
synchronized, as a result of which the agent-leader is de-
termined (it is assumed that at the beginning of the syn-
chronization algorithm execution, all processes are in the
same state - the distribution agents are ready to stop the
system). After the synchronization algorithm is executed,
the lead agent stops the simulation process by sending
a corresponding message to the simulation system. The
agents then request the necessary objects from the system
(in the form of streams of serialized data). The migration
agent moves objects to other nodes. The migration agent
passes the objects of the simulation model to the agents
of distribution of the target nodes. After the migration is
complete, the distribution agents are synchronized again
and the simulation system is started. The modelling pro-
cess continues. At the same time, the monitoring of the
state of computingnodes and the redistribution of the load
continue.

5 Experimental results
The system complexity in this case comes from the notion
of self-organization and computing resources autonomy in
the domain of high-performance computing. The notion of
complex software engineering is awell-established area of
research that traces back to adaptive systems and arti�cial
intelligence. Its core is built around an idea that software
systems capable of adapting to the changing environment
without direct commands of an external actor. In terms of
practical advantage, this would mean self-managing sys-
tem that needs little maintenance e�ort and provides high
system dependability due to its design in return. However,
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there is little evidence of such systems being exploited
on industrial scale. This may happened due to high the-
orization of the matter and little work on the engineering
methods for complex software systems. For instance, de-
spite theoretically proving all the bene�ts of such systems
there is very little evidence of its empirical, working char-
acteristics. In such a case, any justi�cation of complex sys-
tem design can be trickled down to with no evidence of
the basic practical research and argued against. Given this
situation, it is highly relevant to study such phenomena
empirically and to present some clari�cation of real sys-
tem behaviour, to investigate the e�ects of the proposed
load balancing system, a multi-agent system will be im-
plemented to provide a testing platform of the proposed
load-balancing model.

As a problem, the Mean-Shift algorithm was imple-
mented to segment and repair damaged video, the data
was taken from the Al-Farabi University in Almaty. The
whole systemwaswritten in Javausing JDK 1.6 andwas im-
plemented on a cluster of machines, running Linux 2.6.9
(Scienti�c Linux 4.5). The con�gurations of these 30 ma-
chines with the following characteristics: processor Intel
core i3 RAM 3 GB, Intel core i5 RAM 4 GB, Intel core i7 RAM
8 GB.

These machines reside at the Analysis and Processing
of Big Data Laboratory, at the Institute of Information and
Computational Technologies in Almaty. All the machines
possesses separate hard drives, but the same set of �les are
shared on every one of them. This is to ensure that all the
related initialization and con�guration �les are accessible
fromeverymachine. One host is the central host that holds
theMain-Container, this host will invoke thewhole system
start up on each host. As a result of laboratory testing, we
took measurements of the root-mean-square deviation of
the loadof 30 computational nodes, betweenwhichvirtual
machines were balanced. The deviation limit is set at 7%.
The results of taking before and after balancing are shown
in Fig. 5.

6 Conclusion
The presented research provides some practical insides to
the Hadoop-MapReduce computing concept. In particular
it was con�rmed that the system maintains desired work-
load balance behaviour in a complex environment and is
able to self-organize and self-reorganize dynamicallywith-
out being explicitly programmed. On the other hand, the
system performance was not studied yet, whist it is one
of the most important factors when choosing a comput-

Figure 5: Root-mean-square deviation of node load.

ing platform. Thus, there is a need to analyse execution
e�ciency and compare it to available Hadoop-MapReduce
platform evaluations. Further research is going to concen-
trate on the execution performance. In particular, the au-
thors will concentrate on shell design or adopt an agent-
learning framework that is table to manage the system
e�ciency by a�ecting agents social behaviour. Finally, it
is worth pointing out considerable limitations of the pre-
sented research. Firstly, implemented Hadoop platform is
simple and perspective platform development may lead
to changes in dependability in any way. Secondly, exper-
iment installation of Hadoop might not be optimal and re-
sults may be misleading to some extent.
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