Lecture 14-15. Clustering and Trees

A common problem in biology is to partition a set of experimental data into
groups (clusters) in such a way that the data points within the same clus-
ter are highly similar while data points in different clusters are very differ-
ent. This problem is far from simple, and this chapter covers several algo-
rithms that perform different types of clustering. There is no simple recipe
for choosing one particular approach over another for a particular clustering
problem, just as there is no universal notion of what constitutes a “good clus-
ter.” Nonetheless, these algorithms can yield significant insight into data and
allow one, for example, to identify clusters of genes with similar functions
even when it is not clear what particular role these genes play.
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Gene Expression Analysis

Sequence comparison often helps to discover the function of a newly se-
quenced gene by finding similarities between the new gene and previously
sequenced genes with known functions. However, for many genes, the se-
quence similarity of genes in a functional family is so weak that one cannot
reliably derive the function of the newly sequenced gene based on sequence
alone. Moreover, genes with the same function sometimes have no sequence
similarity at all. As a result, the functions of more than 40% of the genes in
sequenced genomes are still unknown.
In the last decade, a new approach to analyzing gene functions has emerged.

DNA arrays allow one to analyze the expression levels (amount of mRNA pro-
duced in the cell) of many genes under many time points and conditions and
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to reveal which genes are switched on and switched off in the cell. The
outcome of this type of study is an n x m expression matrix I, with the n
rows corresponding to genes, and the m columns corresponding to differ-
ent time points and different conditions. The expression matrix I represents
intensities of hybridization signals as provided by a DNA array. In reality, ex-
pression matrices usually represent transformed and normalized intensities
rather than the raw intensities obtained as a result of a DNA array experi-
ment, but we will not discuss this transformation.

The element I; ; of the expression matrix represents the expression level of
gene i in experiment j; the entire ith row of the expression matrix is called
the expression pattern of gene i. One can look for pairs of genes in an expres-
sion matrix with similar expression patterns, which would be manifested as
two similar rows. Therefore, if the expression patterns of two genes are sim-
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ilar, there is a good chance that these genes are somehow related, that is,
they either perform similar functions or are involved in the same biological
process. Accordingly, if the expression pattern of a newly sequenced gene
is similar to the expression pattern of a gene with known function, a biolo-
gist may have reason to suspect that these genes perform similar or related
functions. Another important application of expression analysis is in the de-
ciphering of regulatory pathways; similar expression patterns usually imply
coregulation. However, expression analysis should be done with caution
since DNA arrays typically produce noisy data with high error rates.

Clustering algorithms group genes with similar expression patterns into clus-
ters with the hope that these clusters correspond to groups of functionally
related genes. To cluster the expression data, the n x m expression matrix is
often transformed into an n x n distance matrix d = (d; ;) where d; ; reflects
how similar the expression patterns of genes ¢ and j are (see figure 1).
The goal of clustering is to group genes into clusters satisfying the following
two conditions:

e Homogeneity. Genes (rather, their expression patterns) within a cluster
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(a) Intensity matrix, 1
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(c) Expression patterns as points in three-dimentsional
space.

Figure 1 An “expression” matrix of ten genes measured at three time points, and
the cnrrespnnding distance matrix. Distances are calculated as the Euclidean distance
in three-dimensional space.
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Figure 2 Data can be grouped into clusters. Some clusters are better than others:
the two clusters in a) exhibit good homogeneity and separation, while the clusters in
b) do not.

should be highly similar to each other. That is, d; ; should be small if :
and j belong to the same cluster.
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» Separation. Genes from different clusters should be very different. That is,
d; ; should be large if i and j belong to different clusters.

An example of clustering is shown in figure 2. Figure 2 (a) shows a
good partition according to the above two properties, while (b) shows a bad
one. Clustering algorithms try to find a good partition.

A “good” clustering of data is one that adheres to these goals. While we
hope that a better clustering of genes gives rise to a better grouping of genes
on a functional level, the final analysis of resulting clusters is left to biolo-
gists.

Ditferent tissues express different genes, and there are typically over 10,000
genes expressed in any one tissue. Since there are about 100 different tissue
types, and since expression levels are often measured over many time points,
gene expression experiments can generate vast amounts of data which can
be hard to interpret. Compounding these difficulties, expression levels of
related genes may vary by several orders of magnitude, thus creating the
problem of achieving accurate measurements over a large range of expres-
sion levels; genes with low expression levels may be related to genes with
high expression levels.
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Figure 3 A schematic of hierarchical clustering.
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Hierarchical Clustering

In many cases clusters have subclusters, these have subsubclusters, and so
on. For example, mammals can be broken down into primates, carnivora,
bats, marsupials, and many other orders. The order carnivora can be further
broken down into cats, hyenas, bears, seals, and many others. Finally, cats

can be broken into thirty seven species.
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Figure 4 A hierarchical clustering of the data in figure 1
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Hierarchical clustering (fig.  3) is a technique that organizes elements into
a tree, rather than forming an explicit partitioning of the elements into clus-
ters. In this case, the genes are represented as the leaves of a tree. The edges
of the trees are assigned lengths and the distances between leaves—that is,
the length of the path in the tree that connects two leaves—correlate with
entries in the distance matrix. Such trees are used in both the analysis of ex-
pression data and in studies of molecular evolution which we will discuss
below.

Figure 4 shows a tree that represents clustering of the data in figure 1.
This tree actually describes a family of different partitions into clusters, each
with a different number of clusters (one for each value from 1 to n). You can
see what these partitions by drawing a horizontal line through the tree. Each
line crosses the tree at i points (1 < ¢ < k) and correspond to ¢ clusters.
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The HIERARCHICALCLUSTERING algorithm below takes an n x n distance
matrix d as an input, and progressively generates n different partitions of the
data as the tree it outputs. The largest partition has n single-element clusters,
with every element forming its own cluster. The second-largest partition
combines the two closest clusters from the largest partition, and thus has
n — 1 clusters. In general, the ith partition combines the two closest clusters
from the (i — 1)th partition and has n — i + 1 clusters.

HIERARCHICALCLUSTERING(d, n)
1 Form n clusters, each with 1 element
2 Construct a graph T by assigning an isolated vertex to each cluster

3 while there is more than 1 cluster

4 Find the two closest clusters (', and C5

5 Merge C'; and C5 into new cluster C with |C| + |C3| elements
6 Compute distance from C' to all other clusters

7 Add a new vertex (' to T and connect to vertices C; and (5

8 Remove rows and columns of d corresponding to C'; and s

9 Add a row and column to d for the new cluster C

10 return T
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Line 6 in the algorithm is (intentionally) left ambiguous; clustering algo-
rithms vary in how they compute the distance between the newly formed
cluster and any other cluster. Different formulas for recomputing distances
yield different answers from the same hierarchical clustering algorithm. For
example, one can define the distance between two clusters as the smallest
distance between any pair of their elements

Amin(C*,C) = min . d(x,y)

e yel
or the average distance between their elements

. 1
davg (C,C) = — Y dzy).

C|
reC* yelC

Another distance function estimates distance based on the separation of C
and C5 in HIERARCHICALCLUSTERING:

d(C*,Cy) +d(C*.Ca) — d(C1.Cy)

d(C*,C) = 5
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In one of the first expression analysis studies, Michael Eisen and colleagues
used hierarchical clustering to analyze the expression profiles of 8600 genes
over thirteen time points to find the genes responsible for the growth re-
sponse of starved human cells. The HIERARCHICALCLUSTERING resulted
in a tree consisting of five main subtrees and many smaller subtrees. The
genes within these five clusters had similar functions, thus confirming that
the resulting clusters are biologically sensible.

k-Means Clustering

One can view the n rows of the n x m expression matrix as a set of n points
in m-dimensional space and partition them into k subsets, pretending that
k—the number of clusters—is known in advance.
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One of the most popular clustering methods for points in multidimen-
sional spaces is called k-Means clustering. Given a set of n data points in
m-dimensional space and an integer k, the problem is to determine a set
of k points, or centers, in m-dimensional space that minimize the squared
error distortion defined below. Given a data point v and a set of & centers
X = {r1,...zr}, define the distance from v to the centers A" as the distance
from v to the closest point in &, that is, d(v, X') = miny<;<p d(v. z;). We will
assume for now that d(v, x;) is just the Euclidean distance in m dimensions.
The squared error distortion for a set of n points V = {vy,...v,}, and a set
of k centers X' = {xy,...xz}, is defined as the mean squared distance from
each data point to its nearest center:

E:l=1 rfl::"t.-lz- I.':}a-’ ::2

i)

k-Means Clustering Problem:
Given n data points, find k center points minimizing the squared error
distortion.

Input: A set, V, consisting of n points and a parameter k.

Output: A set A" consisting of & points (called centers) that
minimizes d(V, X') over all possible choices of X
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While the above formulation does not explicitly address clustering n points
into k clusters, a clustering can be obtained by simply assigning each point to
its closest center. Although the k-Means Clustering problem looks relatively
simple, there are no efficient (polynomial) algorithms known for it. The Lioyd
k-Means clustering algorithm is one of the most popular clustering heuristics
that often generates good solutions in gene expression analysis. The Lloyd
algorithm randomly selects an arbitrary partition of points into k clusters and
tries to improve this partition by moving some points between clusters. In
the beginning one can choose arbitrary k points as “cluster representatives.”
The algorithm iteratively performs the following two steps until either it con-
verges or until the fluctuations become very small:

¢ Assign each data point to the cluster C; corresponding to the closest clus-
ter representative x; (1 <1 < k)

* After the assignments of all n data points, compute new cluster represen-

tatives according to the center of gravity of each cluster, that is, the new

cluster representative is E—{i‘"— for every cluster C'.
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The Lloyd algorithm often converges to a local minimum of the squared
error distortion function rather than the global minimum. Unfortunately, in-
teresting objective functions other than the squared error distortion lead to
similarly difficult problems. For example, finding a good clustering can be
quite difficult if, instead of the squared error distortion (3>_;_, d(v;. X')?), one
tries to minimize Y '_, d(v;, X') (k-Median problem) or max;<;<, d(v;, X') (k-
Center problem). We remark that all of these definitions of clustering cost em-
phasize the homogeneity condition and more or less ignore the other impor-
tant goal of clustering, the separation condition. Moreover, in some unlucky
instances of the k-Means Clustering problem, the algorithm may converge
to a local minimum that is arbitrarily bad compared to an optimal solution

While the Lloyd algorithm is very fast, it can significantly rearrange every
cluster in every iteration. A more conservative approach is to move only one
element between clusters in each iteration. We assume that every partition
P of the n-element set into % clusters has an associated clustering cost, de-
noted cost( F), that measures the quality of the partition P: the smaller the
clustering cost of a partition, the better that clustering is. The squared error
distortion is one particular choice of cost(P) and assumes that each center
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point is the center of gravity of its cluster. The pseudocode below implicitly
assumes that cost(F) can be efficiently computed based either on the dis-
tance matrix or on the expression matrix. Given a partition P, a cluster C
within this partition, and an element i outside C, P,_~ denotes the partition
obtained from P by moving the element i from its cluster to C. This move
improves the clustering cost only if A(i — C) = cost(P) — cost(FPi—g) > 0,
and the PROGRESSIVEGREEDYK-MEANS algorithm searches for the “best”
move in each step (i.e., a move that maximizes A(i — (') for all C' and for all
i & C).
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PROGRESSIVEGREEDYK-MEANS(k)
1 Select an arbitrary partition P into k clusters.
2  while forever
3 bestChange — ()

4 for every cluster C
5 for everyelementi & C
6 if moving i to cluster C' reduces the clustering cost
7 if A(i — C) > bestChange
8 bestChange «— A(i — C)
9 " — i
10 C*—C
11 if bestChange > ()
12 change partition P by moving i* to C*
13 else
14 return F

Even though line 2 makes an impression that this algorithm may loop end-
lessly, the return statement on line 14 saves us from an infinitely long wait.
We stop iterating when no move allows for an improvement in the score; this
eventually has to happen.
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Clustering and Corrupted Cliques

A complete graph, written K, is an (undirected) graph on n vertices with
every two vertices connected by an edge. A cligue graph is a graph in which
every connected component is a complete graph. Figure 5 (a) shows a
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Figure 5 a) A clique graph consisting of the three connected components K3, Ks,
and Kg. b) A graph with 7 vertices that has 4 cliques formed by vertices {1,2.6,7},
{2,.3},{5.6},and {3.4.5}.
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clique graph consisting of three connected components, K3, K5, and Kg. Ev-
ery partition of n elements into k clusters can be represented by a clique
graph on n vertices with % cliques. A subset of vertices V' C V" in a graph
G(V, E) forms a complete subgraph if the induced subgraph on these vertices is
complete, that is, every two vertices v and w in V' are connected by an edge
in the graph. For example, vertices 1, 6, and 7 form a complete subgraph
of the graph in figure 5 (b). A clique in the graph is a maximal complete
subgraph, that is, a complete subgraph that is not contained inside any other
complete subgraph. For example, in figure 5 (b), vertices 1, 6, and 7 form
a complete subgraph but do not form a clique, but vertices 1, 2, 6, and 7 do.
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In expression analysis studies, the distance matrix (d; ;) is often further
transformed into a distance graph G = (G(#), where the vertices are genes
and there is an edge between genes ¢ and j if and only if the distance be-
tween them is below the threshold #, that is, if d; ; < #. A clustering of
genes that satisfies the homogeneity and separation principles for an appro-
priately chosen # will correspond to a distance graph that is also a clique
graph. However, errors in expression data, and the absence of a “univer-
sally good” threshold # often results in distance graphs that do not quite
form clique graphs (fig.  6). Some elements of the distance matrix may
fall below the distance threshold for unrelated genes (adding edges between
different clusters), while other elements of the distance matrix exceed the
distance threshold for related genes (removing edges within clusters). Such
erroneous edges corrupt the clique graph, raising the question of how to
transform the distance graph into a clique graph using the smallest number
of edge removals and edge additions.
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Corrupted Cliques Problem:
Determine the smallest number of edges that need to be added or
removed to transform a graph into a cligue graph.

Input: A graph G.

Output: The smallest number of additions and removals of
edges that will transform & into a clique graph.

It turns out that the Corrupted Cliques problem is AN"P-hard, so some
heuristics have been proposed to approximately solve it. Below we describe
the time-consuming PCC (Parallel Classification with Cores) algorithm, and
the less theoretically sound, but practical, CAST (Cluster Affinity Search Tech-
nique) algorithm inspired by PCC.

Suppose we attempt to cluster a set of genes 5, and suppose further that
5'is a subset of 5. If we are somehow magically given the correct clustering
{Cy,....Cr} of 8§, could we extend this clustering of 5" into a clustering of
the entire gene set 57 Let 5\ S’ be the set of unclustered genes, and N (7, C;)
be the number of edges between gene j € S 5" and genes from the cluster C;
in the distance graph. We define the affinity of gene j to cluster C; as L‘-'t-ff—l
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g1 G2 g3 94 95 Gs g7 gz fo dio
g1 g0 8.1 92 7.7 93 23 5.110.2 6.1 7.0

g2 | 81 0.012.0 0912.0 9.510.112.8 2.0 1.0
g3 | 9.212.0 0.011.2 0.711.1 81 1.110511.5
g1 | 7.7 09112 0011.2 9.2 95120 1.6 1.1
= | 93120 0.711.2 0.011.2 85 1.010.611.6
g6 | 2.3 9511.1 9.211.2 0.0 5.612.1 7.7 8.5
g- | 5.110.1 81 9.5 85 5.6 0.0 9.1 83 9.3
gz | 10212.8 1.112.0 1.012.1 9.1 0.011.4124
g9 | 6.1 20105 1.610.6 7.7 83114 0.0 1.1
gio | 7.0 1.011.5 1.111.6 85 93124 1.1 0.0

(a) Distance matrix, d (distances shorter than 7 are shown in

bold).
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(b) Distance graph for 8 = T. (c) Clique graph.

Figure 6 The distance graph (b) for # = 7 is not quite a clique graph. However, it
can be transformed into a clique graph (c) by removing edges (g1, gi0) and (g1. ga)

.
y
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A natural maximal affinity approach would be to put every unclustered gene
j into the cluster C; with the highest affinity to j, that is, the cluster that
maximizes 1‘—'*{-1{— In this way, the clustering of S can be extended into
clustering ot the entire gene set S. In 1999, Amir Ben-Dor and colleagues
developed the PCC clustering algorithm, which relies on the assumption that
if 57 is sufficiently large and the clustering of S’ is correct, then the clustering
of the entire gene set is likely to to be correct.

The only problem is that the correct clustering of S* is unknown! The way
around this is to generate all possible clusterings of §’, extend them into a
clustering of the entire gene set S, and select the resulting clustering with
the best clustering score. As attractive as it may sound, this is not practical
(unless S’ is very small) since the number of possible partitions of a set S’ into
k clusters is k/5'/. The PCC algorithm gets around this problem by making
5" extremely small and generating all partitions of this set into k& clusters.
It then extends each of these k/®" partitions into a partition of the entire n-
element gene set by the two-stage procedure described below. The distance

graph G guides these extensions based on the maximal affinity approach.
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The function score( P) is defined to be the number of edges necessary to add
or remove to turn (¢ into a clique graph according to the partition P. The
PCC algorithm below clusters the set of elements S into k clusters according
to the graph by extending partitions of subsets of 5 using the maximal
affinity approach:

PCC(G, k)
S — set of vertices in the distance graph
n «— number of elements in §
hestScore «— o
Randomly select a “very small” set §' C 5, where |5’ = loglogn
Randomly select a “small” set §” C (S §'), where |5" = logn.
for every partition P’ of §' into k clusters
Extend P’ into a partition P of §”
Extend P" into a partition P of §
if score(P) < bestScore
bestScore — score( P)
best Partition — P
return best Partition

00 =1 O o= W R =

(S T
M =
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The number of iterations that PCC requires is given by the number of par-
titions of set §', which is k5" = gloslsn — (jggp)e8ak = (logn)°. The
amount of work done in each iteration is O(n?), resulting in a running time
of O (n?(logn)¢). Since this is too slow for most applications, a more practi-

cal heunstlc called CAST is often used.

Detine the distance between gene ¢ and cluster (' as the average distance

between i and all genes in the cluster C: d(i,C) = = Zue ; ) Given a thresh-

old #, a gene i is close to cluster C if d(i,C') < # and distant otherwise. The
CAST algorithm below clusters set S according to the distance graph G and
the threshold f#. CAST iteratively builds the partition P of the set S by find-
ing a cluster C such that no gene i € C is close to ', and no gene ¢ € C'is
distant from C. In the beginning of the routine, P is initialized to an empty
set.
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CAST(G.8)
1 S — setof vertices in the distance graph G
P«
while S # ()
v «— vertex of maximal degree in the distance graph G.
C «— {v}
while there exists a close gene i € C or distant genei € C
Find the nearest close gene i € ' and add it to C.
Find the farthest distant gene i € C' and remove it from C.
Add cluster C to the partition P
S—8S\C
Remove vertices of cluster C' from the distance graph
12 return P

WMOOD0 =1 3y W i W R

[ -
=

Although CAST is a heuristic with no performance guarantee it per-
forms remarkably well with gene expression data.
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Evolutionary Trees

In the past, biologists relied on morphological features, like beak shapes or
the presence or absence of fins to construct evolutionary trees. Today biol-
ogists rely on DNA sequences for the reconstruction of evolutionary trees.
Figure 7 represents a DNA-based evolutionary tree of bears and raccoons
that helped biologists to decide whether the giant panda belongs to the bear
family or the raccoon family. This question is not as obvious as it may at first
sound, since bears and raccoons diverged just 35 million years ago and they
share many morphological features.

For over a hundred vears biologists could not agree on whether the giant
panda should be classified in the bear tamily or in the raccoon family. In 1870
an amateur naturalist and missionary, Pere Armand David, returned to Paris
from China with the bones of the mysterious creature which he called simply
“black and white bear.” Biologists examined the bones and concluded that
they more closely resembled the bones of a red panda than those of bears.
Since red pandas were, beyond doubt, part of the raccoon family, giant pan-
das were also classified as raccoons (albeit big ones).

Although giant pandas look like bears, they have features that are unusual
for bears and typical of raccoons: they do not hibernate in the winter like
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other bears do, their male genitalia are tiny and backward-pointing (like rac-

coons’ genitalia), and they do not roar like bears but bleat like raccoons. As
a result, Edwin Colbert wrote in 1938:

So the quest has stood for many years with the bear proponents and the
raccoon adherents and the middle-of-the-road group advancing their
several arguments with the clearest of logic, while in the meantime the
giant panda lives serenely in the mountains of Szechuan with never a

thought about the zoological controversies he is causing by just being
himself.

The giant panda classification was finally resolved in 1985 by Steven O'Brien
and colleagues who used DNA sequences and algorithms, rather than be-
havioral and anatomical features, to resolve the giant panda controversy
(fig. 7). The final analysis demonstrated that DNA sequences provide an
important source of information to test evolutionary hypotheses. O'Brien’s

study used about 500,000 nucleotides to construct the evolutionary tree of
bears and raccoons.
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Roughly at the same time that Steven O'Brien resolved the giant panda
controversy, Rebecca Cann, Mark Stoneking and Allan Wilson constructed
an evolutionary tree of humans and instantly created a new controversy. This
tree led to the Out of Africa hypothesis, which claims that humans have a
common ancestor who lived in Africa 200,000 years ago. This study turned
the question of human origins into an algorithmic puzzle.

The tree was constructed from mitochondrial DNA (mtDNA) sequences of
people of different races and nationalities. Wilson and his colleagues com-
pared sequences of mtDNA from people representing African, Asian, Aus-
tralian, Caucasian, and New Guinean ethnic groups and found 133 variants
of mtDNA. Next, they constructed the evolutionary tree for these DNA se-
quences that showed a trunk splitting into two major branches. One branch
consisted only of Africans, the other included some modern Africans and
some people from everywhere else. They concluded that a population of
Africans, the first modern humans, forms the trunk and the first branch of
the tree while the second branch represents a subgroup that left Africa and
later spread out to the rest of the world. All of the mtDNA, even samples
from regions of the world far away from Africa, were strikingly similar. This
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Figure 7 An evolutionary tree showing the divergence of raccoons and bears.
Despite their difference in size and shape, these two families are closely related.
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suggested that our species is relatively young. But the African samples had
the most mutations, thus implying that the African lineage is the oldest and
that all modern humans trace their roots back to Africa. They further esti-
mated that modern man emerged from Africa 200,000 years ago with racial
differences arising only 50,000 years ago.

Shortly after Allan Wilson and colleagues constructed the human mtDNA
evolutionary tree supporting the Out of Africa hypothesis, Alan Templeton
constructed 100 distinct trees that were also consistent with data that pro-
vide evidence against the African origin hypothesis! This is a cautionary tale
suggesting that one should proceed carefully when constructing large evolu-
tionary trees and below we describe some algorithms for evolutionary tree
reconstruction.
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Biologists use either unrooted or rooted evolutionary trees; the difference
between them is shown in figure 8. In a rooted evolutionary tree, the
root corresponds to the most ancient ancestor in the tree, and the path from
the root to a leaf in the rooted tree is called an evolutionary path. Leaves
of evolutionary trees correspond to the existing species while internal ver-
tices correspond to hypothetical ancestral species. In the unrooted case, we
do not make any assumption about the position of an evolutionary ancestor
(root) in the tree. We also remark that rooted trees (defined formally as undi-
rected graphs) can be viewed as directed graphs if one directs the edges of
the rooted tree from the root to the leaves.

Biologists often work with binary weighted trees where every internal ver-
tex has degree equal to 3 and every edge has an assigned positive weight
(sometimes referred to as the length). The weight of an edge (v, w) may reflect
the number of mutations on the evolutionary path from v to w or a time esti-
mate for the evolution of species v into species w. We sometimes assume the
existence of a molecular clock that assigns a time #(v) to every internal vertex
v in the tree and a length of #{w) — #(v) to an edge (v, w). Here, time corre-
sponds to the “moment” when the species v produced its descendants; every
leaf species corresponds to time 0 and every internal vertex presumably cor-
responds to some negative time.
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(a) Unrooted (b) Rooted tree (c) The
tree Same
rooted tree

Figure 8 The difference between unrooted (a) and rooted (b) trees. These both
describe the same tree, but the unrooted tree makes no assumption about the origin
of species. Rooted trees are often represented with the root vertex on the top (c),
emphasizing that the root corresponds to the ancestral species.
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Figure 9 A weighted unrooted tree. The length of the path between any two

vertices can be calculated as the sum of the weights of the edges in the path between
them. For example, d(1,5) = 12+ 13 + 14 + 17 + 12 = 68.

Distance-Based Tree Reconstruction

If we are given a weighted tree T with n leaves, we can compute the length
of the path between any two leaves i and j, d; ;(T) (fig.  9). Evolutionary
biologists often face the opposite problem: they measure the n x n distance
matrix (D; ;), and then must search for a tree T' that has n leaves and fits
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Figure 10 A tree with three leaves.

the data, thatis, d; ;(T) = D;; for every two leaves i and j. There are
many ways to generate distance matrices: for example, one can sequence a
particular gene in n species and define D; ; as the edit distance between this
gene in species i and species j.
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It is not difficult to construct a tree that fits any given 3 x 3 (symmetric
non-negative) matrix IJ. This binary unrooted tree has four vertices i. j. k as
leaves and vertex ¢ as the center. The lengths of each edge in the tree are
defined by the following three equations with three variables d, ., d; ., and
dy.. (fig.  10):

d; . + f-jil_}'.r_' = Di’.j d; . +dp . =D; 1 fjll}'_,,-_- +dp .= ..ngl

The solution is given by

D;;+ D —Djy
fi‘-;_,,-_- = - . ffj_,,—_- =

2

D;i+ D — D ; Dy i+ Dy ; — D;
= E i » = .

2 2

An unrooted binary tree with n leaves has 2n — 3 edges, so fitting a given
tree to an n x n distance matrix D leads to solving a system of (7)) equations
with 2n — 3 variables. For n = 4 this amounts to solving six equations with
only five variables. Of course, it is not always possible to solve this system,
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Figure 11 Additive and nonadditive matrices.
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making it hard or impossible to construct a tree from D. A matrix (D; ;)
is called additive if there exists a tree T" with d; ;(T) = D;, ;, and nonadditive
otherwise (fig.  11).

Distance-Based Phylogeny Problem:
Reconstruct an evolutionary tree from a distance matrix.

Input: An n x n distance matrix (D; ;).

Output: A weighted unrooted tree T with n leaves fitting D,
that is, a tree such that d; ;(T) = D; ; forall1 <i < j < nif
(D;, ;) is additive.
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Figure 12 If i and j are neighboring leaves and k is their parent, then Dy ., =
D D, . —

3, L

2

x ==
e . TTL

D; & - .
~L tor every other vertex m in the tree.

The Distance-Based Phyvlogeny problem may not have a solution, but if it
does—that is, if IJ is additive—there exists a simple algorithm to solve it. We
emphasize the fact that we are somehow given the matrix of evolutionary
distances between each pair of species, and we are searching for both the
shape of the tree that fits this distance matrix and the weights for each edge
in the tree.
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Reconstructing Trees from Additive Matrices

A “simple” way to solve the Distance-Based Phylogeny problem for additive
trees isto find a pair of neighboring leaves, that is, leaves that have the same
parent vertex. Figure 12 illustrates that for a pair of neighboring leaves i
and j and their parent vertex k, the following equality holds for every other

leaf m in the tree:
-Dii.m LB -Dj.m - Di.j

2

Therefore, as soon as a pair of neighboring leaves i and j is found, one can
remove the corresponding rows and columns ¢ and j from the distance ma-
trix and add a new row and column corresponding to their parent k. Since
the distance matrix is additive, the distances from k to other leaves are re-
computed as Dy ,, = D""’*_Dé"“_ﬂ""‘. This transformation leads to a sim-
ple algorithm for the Distance-Based Phylogeny problem that finds a pair of
neighboring leaves and reduces the size of the tree at every step.

One problem with the described approach is that it is not very easy to find

neighboring leaves! One might be tempted to think that a pair of closest

Dl:.m =
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Figure 13 The two closest leaves (j and %) are not neighbors in this tree.

leaves (i.e., the leaves i and j with minimum D; ;) would represent a pair
of neighboring leaves, but a glance at figure 13 will show that this is not
true. Since finding neighboring leaves using only the distance matrix is a
nontrivial problem, we postpone exploring this until the next section and
turn to another approach.
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Figure 14 illustrates the process of shortening all “hanging” edges of
a tree T, that is, edges leading to leaves. If we reduce the length of every
hanging edge by the same small amount ¢, then the distance matrix of the
resulting tree is (d; ; — 24) since the distance between any two leaves is re-
duced by 2. Sooner or later this process will lead to “collapsing” one of the
leaves when the length of the corresponding hanging edge becomes equal to
0 (when 4 is equal to the length of the shortest hanging edge). At this point,
the original tree T = T,, with n leaves will be transformed into a tree T},_;
with n — 1 or fewer leaves.

Although the distance matrix 7 does not explicitly contain information
about 4, it is easy to derive both d§ and the location of the collapsed leaf in
T—1 by the method described below. Thus, one can perform a series of tree
transformations T,, — T, — ... — Ty — T3, then construct the tree T5
(which is easy, since it consists of only a single edge), and then perform a
series of reverse transformations 73 — 73 — ... — T,_1 — T}, recovering
information about the collapsed edges at every step (fig.  14)

A triple of distinct elements 1 < i, 5.k < n is called degenerate if D; ; +
D = D;, which is essentially just an indication that j is located on the
path from i to k in the tree. If D is additive, D; ; + D, . = D; ;. for every triple
i, j, k. We call the entire matrix D degenerate if it has at least one degenerate
triple. If (i, j, k) is a degenerate triple, and some tree T fits matrix D, then the
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Figure 14 The iterative process of shortening the hanging edges of a tree.
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vertex j should lie somewhere on the path between i and kin T. Another
way to state this is that j is attached to this path by an edge of weight 0, and
the attachment point for j is located at distance D; ; from vertex i. There-
fore, if an n x n additive matrix D has a degenerate triple, then it will be
reduced to an (n — 1) x (n — 1) additive matrix by simply excluding vertex
j from consideration; the position of j will be recovered during the reverse
transformations. If the matrix D does not have a degenerate triple, one can
start reducing the values of all elements in D by the same amount 24 until
the point at which the distance matrix becomes degenerate for the first time
(i.e., d is the minimum value for which (D; ; — 24) has a degenerate triple for
some i and j). Determining how to calculate the minimum value of 4 (called
the trimming parameter) is left as a problem at the end of this chapter. Though
yvou do not have the tree T, this operation corresponds to shortening all of
the hanging edges in T by 4 until one of the leaves ends up on the evolution-
ary path between two other leaves for the first time. This intuition motivates
the following recursive algorithm for finding the tree that fits the data.
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ADDITIVEPHYLOGENY (D)
1 if Disa?2 x 2 matrix
T «— the tree consisting of a single edge of length D ».
return T
if D is non-degenerate
0 «— trimming parameter of matrix D
foralll<i#j<n
D+ D;; — 26
else

W00 =] Oy i od= W R

g «— 0
Find a triple ¢, j, k in D such that D;; + D;,. = Dy

=2
=

F

(B
=

r— D ;

Remove jth row and jth column from D.

T — ADDITIVEPHYLOGENY ()

Add a new vertex v to T at distance « from i to k
Add j back to T by creating an edge (v, j) of length 0
for evervleaflin T

= e et
O od= L pa

17 if distance from ! to v in the tree 7" does not equal D, ;
18 output “Matrix D is not additive”

19 return

20 Extend hanging edges leading to all leaves by ¢

a3
=t

return T
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Figure 15 Repreeaenting three sums in a tree with 4 vertices.
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The ADDITIVEPHYLOGENY algorithm above provides a way to check if
the matrix D is additive. While this algorithm is intuitive and simple, it
is not the most efficient way to construct additive trees. Another way to
check additivity is by using the following “four-point condition”. Let 1 <
i, j, k,1 £ n be four distinct indices. Compute 3 sums: D; ; + Dy i, D; .+ D;,
and D;; + Dj . If D is an additive matrix then these three sums can be
represented by a tree with four leaves (fig.  15). Moreover, two of these
sums represent the same number (the sum of lengths of all edges in the tree
plus the length of the middle edge) while the third sum represents another
smaller number (the sum of lengths of all edges in the tree minus the length
of the middle edge). We say that elements 1 < i, j, &, < n satisty the four-
point condition if two of the sums D; ; + Dy, D; . + D;;,and D;; + D
the same, and the third one is smaller than these two.

i,k are

Theorem 1 Ann xnmatrix D is additive if and only if the four point condition
holds for every 4 distinct elements 1 < i, 7, k, 1 < n.

If the distance matrix D is not additive, one might want instead to find
a tree that approximates D using the sum of squared errors  _; .(d:;(T) —

D; ;)? as a measure of the quality of the approximation. This leads to the
(N"P-hard) Least Squares Distance-Based Phylogeny problem:
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Least Squares Distance-Based Phylogeny Problem:
Given a distance matrix, find the evolutionary tree that minimizes
squared error.

Input: An n x n distance matrix (D, ;)

Output: A weighted tree T with n leaves minimizing
>.. .(di;(T) — D, ;)? over all weighted trees with n leaves.

Evolutionary Trees and Hierarchical Clustering

Biologists often use variants of hierarchical clustering to construct evolution-
ary trees. UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is a
particularly simple clustering algorithm. The UPGMA algorithm is a vari-
ant of HIERARCHICALCLUSTERING that uses a different approach to com-
pute the distance between clusters, and assigns heights to vertices of the con-
structed tree. Thus, the length of an edge (u, v) is defined to be the difference
in heights of the vertices v and u. The height plays the role of the molecular
clock, and allows one to “date” the divergence point for every vertex in the
evolutionary tree.
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Given clusters 'y and 2, UPGMA defines the diqtance between them to
be the average pairwise distance: D{(C',Cs) = _EL“T D ico, 2uiec, DU, 7).
At heart, UPGMA is simply another hierarchical clu'-;termg algﬂrlthm that
“dates” vertices of the constructed tree.

UPGMA(D.n)
1 Form n clusters, each with a single element
2 Construct a graph T by assigning an isolated vertex to each cluster
3 Assign height h(v) = 0 to every vertex v in this graph
4 while there is more than one cluster
5 Find the two closest clusters C'; and 5
6 Merge ' and (' into a new cluster C' with (1| + (3| elements
7 for every cluster C* ;E C
8 D(C.C* ﬁ— zrﬂzrf.:f_jﬁjj
9 Add anew v ertex f fD T and connect to vertices 'y and C»
10 h(C) — 22
11 Assign length h(C') — h(C;) to the edge (C',C)
12 Assign length h(C') — h(C32) to the edge (C2., C)
13 Remove rows and columns of D corresponding to ) and Cs
14 Add a row and column to D for the new cluster C

15

return I
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UPGMA produces a special type of rooted tree that is known as ultra-
metric. In ultrametric trees the distance from the root to any leaf is the same.

We can now return to the “neighboring leaves” idea that we developed
and then abandoned in the previous section. In 1987 Naruyva Saitou and
Masatoshi Nei developed an ingenious neighbor joining algorithm for phylo-
genetic tree reconstruction. In the case of additive trees, the neighbor joining
algorithm somehow magically finds pairs of neighboring leaves and pro-
ceeds by substituting such pairs with the leaves’ parent. However, neighbor
joining works well not only for additive distance matrices but for many oth-
ers as well: it does not assume the existence of a molecular clock and ensures
that the clusters that are merged in the course of tree reconstruction are not
only close to each other (as in UPGMA) but also are far apart from the rest.

For a cluster C, define u(C) = ———1—=——=" .1l dlusters o P(C. C") as a
measure of the separation of C' from other clusters.”’ To choose which two
clusters to merge, we look for the clusters C'; and 5 that are simultaneously
close to each other and far from others. One may try to merge clusters that
simultaneously minimize D(C', Cs) and maximize u(C} ) + u(C3). However,
it is unlikely that a pair of clusters 'y and (> that simultaneously minimize
D(CY,C3) and maximize u(C}) + u(C3) exists. As an alternative, one opts to
minimize D(C,,Cs) — u(Cy) — u(C5). This approach is used in the NEIGH-
BORJOINING algorithm below.
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NEIGHBORJOINING( D, n)

1

Form n clusters, each with a single element

2 Construct a graph T by assigning an isolated vertex to each cluster
3 while there is more than one cluster

O 00 ~1 Oy N W=

10
11
12

Find clusters C'; and C; minimizing D{C', C3) — u(Cy) — u(C3)
Merge (' and C5 into a new cluster C with |} + |C3| elements
Compute D(C,C*) = DE{:I‘E“];‘D{G”'E] to every other cluster C*
Add a new vertex C to T and connect it to vertices C'; and C5
Assign length £D(Cy,C2) + 5(u(C1) — u(C2)) to the edge (C1, C)
Assign length £D(Cy, Ca) + $(u(C3) — u(C1)) to the edge (C3, C)
Remove rows and columns of D corresponding to €' and Cs
Add a row and column to D for the new cluster

return T
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Character-Based Tree Reconstruction

Evolutionary tree reconstruction often starts by sequencing a particular gene
in each of n species. After aligning these genes, biologists end up with an
n x m alignment matrix (n species, m nucleotides in each) that can be fur-
ther transformed into an n x n distance matrix. Although the distance matrix
could be analyzed by distance-based tree reconstruction algorithms, a cer-
tain amount of information gets lost in the transformation of the alignment
matrix into the distance matrix, rendering the reverse transformation of dis-
tance matrix back into the alignment matrix impossible. A better technique
is to use the alignment matrix directly for evolutionary tree reconstruction.
Character-based tree reconstruction algorithms assume that the input data are
described by an n x m matrix (perhaps an alignment matrix), where n is the
number of species and m is the number of characters. Every row in the matrix
describes an existing species and the goal is to construct a tree whose leaves
correspond to the n existing species and whose internal vertices correspond
to ancestral species. Each internal vertex in the tree is labeled with a charac-
ter string that describes, for example, the hypothetical number of legs in that
ancestral species. We want to determine what character strings at internal
nodes would best explain the character strings for the n observed species.
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The use of the word “character” to describe an attribute of a species is
potentially confusing, since we often use the word to refer to letters from
an alphabet. We are not at liberty to change the terminology that biologists
have been using for at least a century, so for the next section we will re-
fer to nucleotides as states of a character. Another possible character might
be “number of legs,” which is not very informative for mammalian evolu-
tionary studies, but could be somewhat informative for insect evolutionary
studies.

An intuitive score for a character-based evolutionary tree is the total num-
ber of mutations required to explain all of the observed character sequences.
The parsimony approach attempts to minimize this score, and follows the
philosophy of Occam’s razor: find the simplest explanation of the data (see
figure  16).
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(a) Parsimony Score=3 (b) Parsimony Score=2

Figure 16 If we label a tree’s leaves with characters (in this case, eyebrows and
mouth, each with two states), and choose labels for each internal vertex, we implicitly

create a parsimony score for the tree. By changing the labels in (a) we are able to create
a tree with a better parsimony score in (b).
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Given a tree T with every vertex labeled by an m-long string of characters,
one can set the length of an edge (v, w) to the Hamming distance du (v, w)
between the character strings for v and w. The parsimony score of a tree T is
simply the sum of lengths of its edges > 1 cuges (v.w) of the tree A (U, w). In
reality, the strings of characters assigned to internal vertices are unknown
and the problem is to find strings that minimize the parsimony score.

Two particular incarnations of character-based tree reconstruction are the
Small Parsimony problem and the Large Parsimony problem. The Small Par-
simony problem assumes that the tree is given but the labels of its internal
vertices are unknown, while the vastly more difficult Large Parsimony prob-
lem assumes that neither the tree structure nor the labels of its internal ver-
tices are known.
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Small Parsimony Problem

Small Parsimony Problem:
Find the most parsimonious labeling of the internal vertices in an
evolutionary tree.

Input: Tree T' with each leaf labeled by an m-character
string.

Output: Labeling of internal vertices of the tree 7 minimiz-
ing the parsimony score.

An attentive reader should immediately notice that, because the characters
in the string are independent, the Small Parsimony problem can be solved
independently for each character. Therefore, to devise an algorithm, we can
assume that every leaf is labeled by a single character rather than by a string
of m characters.
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sometimes solving a more general—
and seemingly more difficult—problem may reveal the solution to the more
specific one. In the case of the Small Parsimony Problem we will first solve
the more general Weighted Small Parsimony problem, which generalizes the
notion of parsimony by introducing a scoring matrix. The length of an edge
connecting vertices v and w in the Small Parsimony problem is defined as the
Hamming distance, dg (v, w), between the character strings for v and w. In
the case when every leaf is labeled by a single character in a k-letter alphabet,
dg (v, w) = 0 if the characters corresponding to v and w are the same, and
dg(v,w) = 1 otherwise. One can view such a scoring scheme as a k x k
scoring matrix (d; ;) with diagonal elements equal to 0 and all other elements
equal to 1. The Weighted Small Parsimony problem simply assumes that the
scoring matrix (4; ;) is an arbitrary k& x k matrix and minimizes the weighted

parsimony score »_ i)

all edges (v, w) in the tree V1"

Weighted Small Parsimony Problem:
Find the minimal weighted parsimony score labeling of the internal
vertices in an evolutionary tree.

Input: Tree T with each leaf labeled by elements of a k-letter
alphabet and a k x k scoring matrix (d;; ).

Output: Labeling of internal vertices of the tree T minimiz-
ing the weighted parsimony score.
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Figure 17 A subtreeofa larger tree. The shaded vertices form a tree rooted at the
topmost shaded node.
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In 1975 David Sankoff came up with the following dynamic programming
algorithm for the Weighted Small Parsimony problem. As usual in dynamic
programming, the Weighted Small Parsimony problem for T is reduced to
solving the Weighted Small Parsimony Problem for smaller subtrees of T'. As
we mentioned earlier, a rooted tree can be viewed as a directed tree with all
of its edges directed away from the root toward the leaves. Every vertex v in
the tree T detines a subtree formed by the vertices beneath v (fig.  17), which
are all of the vertices that can be reached from v. Let s;{v) be the minimum
parsimony score of the subtree of v under the assumption that vertex v has
character . For an internal vertex v with children u and w, the score s:(v)
can be computed by analyzing k scores s;(u) and k scores s;(w)for1 <i <k
(below, ¢ and j are characters):

s¢(v) = min {s;(u) + d; + } + min {s;(w) + d;+}
i j

The initial conditions simply amount to an assignment of the scores s;(v)
at the leaves according to the rule: s;{v) = 0 if v is labeled by letter ¢ and
s:(v) = oo otherwise. The minimum weighted parsimony score is given by
the smallest score at the root, s:(r) (fig.  18). Given the computed values
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s¢(v) at all of the vertices in the tree, one can reconstruct an optimal assign-
ment of labels using a backtracking approach that is similar to that used in
chapter 6. The running time of the algorithm is O(nk).

In 1971, even before David Sankoff solved the Weighted Small Parsimony
problem, Walter Fitch derived a solution of the (unweighted) Small Parsi-
mony problem. The Fitch algorithm below is essentially dynamic program-
ming in disguise. The algorithm assigns a set of letters S, to every vertex in
the tree in the following manner. For each leaf v, S, consists of single letter
that is the label of this leat. For any internal vertex v with children v and w,
5. is computed from the sets 5, and S, according to the following rule:

5 S, NSy, if 5, and S, overlap
T S,US,. otherwise

To compute S, we traverse the tree in post-order as in figure 19, starting
from the leaves and working toward the root. After computing S, for all
vertices in the tree, we need to decide on how to assign letters to the internal
vertices of the tree. This time we traverse the tree using preorder traversal
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from the root toward the leaves. We can assign root r any letter from 5. To
assign a letter to an internal vertex v we check if the (already assigned) label
of its parent belongs to 5.. If ves, we choose the same label for v; otherwise
we label v by an arbitrary letter from S, (fig.  20). The running time of this
algorithm is also O(nk).

At first glance, Fitch's labeling procedure and Sankoff’s dynamic program-
ming algorithm appear to have little in common. Even though Fitch probably
did not know about application of dynamic programming for evolutionary
tree reconstruction in 1971, the two algorithms are almost identical. To reveal
the similarity between these two algorithms let us return to Sankoff’s recur-
rence. We say that character t is optimal for vertex v if it yields the smallest
score, that is, if s;(v) = minj<;< ;(v). The set of optimal letters for a ver-
tex v forms a set S(v). If u and w are children of v and if S{u) and S{w)
overlap, then it is easy to see that S(v) = S(u) (] S(w). If S{u) and S(w) do
not overlap, then it is easy to see that S(v) = S(u)|J S{w). Fitch’s algorithm
uses exactly the same recurrence, thus revealing that these two approaches
are algorithmic twins.
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Figure 18 Anillustration of Sankoft’s algorithm. The leaves of the tree are labeled

by A, C, T, Gin order. The minimum weighted parsimony score is given by st(root) =
0+0+3+4+0+2=09.
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Figure 19 Three methods of traversing a tree. (a) Pre-order: SELF, LEFT, RIGHT.
(b) In-order: LEFT, SELF, RIGHT. (c) Post-order: LEFT, KIGHT, SELF.
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Large Parsimony Problem

Large Parsimony Problem:
Find a tree with n leaves having the minimal parsimony score.

Input: An n x m matrix M describing n species, each repre-
sented by an m-character string,.

Output: A tree T with n leaves labeled by the n rows of
matrix M, and a labeling of the internal vertices of this tree
such that the parsimony score is minimized over all possible
trees and over all possible labelings of internal vertices.

Not surprisingly, the Large Parsimony problem is N"P-complete. In the
case n is small, one can explore all tree topologies with n leaves, solve the
Small Parsimony problem for each topology, and select the best one. How-
ever, the number of topologies grows very fast with respect to n, so biologists
often use local search heuristics (e.g., greedy algorithms) to navigate in the
space of all topologies. Nearest neighbor interchange is a local search heuristic
that defines neighbors in the space of all trees. Every internal edge in a tree
defines four subtrees 4, B, C, and D (fig.  21) that can be combined into a



Lecture 14-15. Clustering and Trees

{A} {C} {G} {G}

{A.C} {G}

{A} {C} {G} {G}



Lecture 14-15. Clustering and Trees

/ 1

{A.C. G}

{A.C} {G}

{A} {C} {G} {G}

Figure 20 Anillustration of Fitch's algorithm.
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Figure 21 Threeways of combining the four subtrees detined by an internal edge.
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tree in three different ways that we denote AB|CD, AC|BD, and AD|BC.
These three trees are called neighbors under the nearest neighbor interchange
transformation. Figure 22 shows all trees with five leaves and connects
two trees if they are neighbors. Figure 23 shows two nearest neighbor in-
terchanges that transform one tree into another. A greedy approach to the
Large Parsimony problem is to start from an arbitrary tree and to move (by
nearest neighbor interchange) from one tree to another if such a move pro-
vides the best improvement in the parsimony score among all neighbors of
the tree T.
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(a) All 5-leaf binary trees
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(b) Stereo projection of graph of trees

Figure 22 (a) All unrooted binary trees with five leaves. (b) These can also be
considered to be vertices in a graph; two vertices are connected if and only if their re-
spective trees are interchangeable by a single nearest neighbor interchange operation.
Shown is a three dimensional view of the graph as a stereo representation.
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Figure 23 Two trees that are two nearest neighbor interchanges apart.



