Jlexkuusa 12. CekBenupoBanue JHK

Burrows—\Wheeler Transform

The Burrows—Wheeler transform (BWT) is a transformation of the text
that makes it easier to compress. It can be defined as follows:

e Let T[0..n) be a text. For any i € [0..n), T[i.n)T[0..i) is a rotation of T.
Let M be the n x n matrix, where the rows are all the rotations of 1" in
lexicographical order.

¢ All columns of M are permutations of 1. In particular:
— The first column F contains the text symbols in order.
— The last column L is the BWT of T.

Example 14: The BWT of T = banana$ is . = annb$aa.

F L
$|b a n a n|a
a|l$ b a n al|n
aln a $ b a|n
aln a n a $|6b
bla n a n a|$
nljla $$ b a n|a
n|jla n a $ bl a

Jlekuusa 12. CekBenupoBanue JIHK

Surprisingly, BW'T is invertible, i.e., T can be reconstructed from the
BWT L. We will later see how.

The compressibility of the BW'T is based on sorting by context:

e Consider a symbol s that is followed by a string w in the text. (The
text is considered to be cyclic.) The string w is called a right context of
5. In the matrix M, there is a row beginning with w and ending with s.

¢ Because the rows are sorted, all symbols with the right context w
appear consecutively in the BWT. This part of the BW'T sharing the
context w is called a w-context block and is denoted by L.

e Context blocks are often highly compressible as they consist of symbols
occurring in the same context.

Example 15: In Example 14, [L; = aa.

Here we have right contexts while earlier with higher order compression we
considered left contexts. This makes no essential difference. Furthermore,
the text is often reversed before computing the BWT, which turns left
contexts into right contexts and vice versa.

Jlekuusa 12. CekBenupoBanue JIHK

Example 16: The context block Ly: for a reversed English text, which
corresponds to left context th in unreversed text.

oreeeregeeieeeeanoeecceaerecececcecReRer eRceeeRRRcAARcACRERR RS
eaecececccage] cececcaeereccecececcEcREEcEEREERERRaRe] eeceeaaa]l el
fEeeccEceCacacREREEERRCECRERERAR] cECREEEEEREERERERECECEERERERRAEE
eeeccecceacacRERERETEcEcREcRcece] caccea]lccacacceaccace] ceaERRRER
eeeleecccaecaloaaceacerecacacececaacaaceael cececcaaiccacacacaceee
gcaeceecaereccaecccalccccaaaellecae, & eeeeliiiill e .

1 0 00 e ellililee,er , , . o« 111

Some of those symbols in (unreversed) context:

t raise themselve=, and th€ hunter, thankful and r
ery night it flew round th€ glass mountain keeping
agon, but as soon as he thIew an apple at it the b
f animals, were resting th€mselves. "Halloa, comr
ple below to life. All thOse who have perished on
that the czar gave him th€ beautiful Princess Mil
ng of guns was heard in th€ distance. The czar an
cked magician put me in thls jar, sealed it with t
o acted as messenger in th€ golden castle flew pas
u have only to say, *Go th€re, I know not where; b

Jlekuusa 12. CekBenupoBanue JIHK

The context blocks are closely related to empirical entropies.

Theorem 17: For any text T and any k,
Y | Lu|Ho(Lw) = |T|H(T).

wiedy *

Proof. Let us first note that the equation for the Eth order entropy
Is symmetric. Thus it does not matter whether we talk
about the text or its reversal, or about the left or the right context.

Recall that n, is the number of occurrences of w in the text. Then

Ty — |Leu and
H-Jl,' ! ? !-Jl,u.l T !'HJ.I: ? !'-!!J.':
Ho(Lu) ==Y " ==

! !"-h!-' T !'H-' T !"-h!-' T !"-h!-'

BT SET

The strings L., w& £*, are distinct, i.e, they form a partitioning of the
BWT into o* blocks (some of which may be empty). Furthermore,

Lu|Ho(Lw) == ¥ 1wy 22 log % — nH(T).
> > nwy _

7 1
Wik wed * SE fu w

Jlekuusa 12. CekBenupoBanue JIHK

According to the theocrem, zeroth order compression of the context blocks
achieves kth order compression of the text. This is known as compression
boosting.

As we noted earlier, using a single value of k& everywhere is not optimal in
general. There exists a linear time algorithm for finding a sequence of
variable length contexts wiy,ws, ..., uwy such that L, L., ... Ly, = L and the
total compressed size is minimized. This is called optimal compression
boosting.

For the best compression, we may need to take multiple context lengths
into account. With BW'T this is fairly easy using adaptive methods:

e For most symbols s in the BWT, the nearest preceding symbols share a
long context with s, symbols that are a little further away share a short
context with s, and symbols far away share no context at all.

e T hus adaptive methods that forget, i.e., give higher weight to the
nearest preceding symbols are often good compressors of the BWT.

e Such methods can be context oblivious: They achieve good
compression for all contexts without any knowledge about context
blocks or context lengths.

Jlekuusa 12. CekBenupoBanue JIHK

Run-length encoding

An extreme form of forgetting is run-length encoding (RLE). RLE encodes
a run s* of k consecutive occurrences of a symbol s by the pair (s. k).
MNothing beyond the run has an effect on the encoding.

Example 18: The run-length encoding of Ly from Example 16 begins:
{0,1) {r,1} {e,3} {r,1) {e.1) (0,1} {e,2) {i,1} (e, 4} {(a.1) {0.2) (e,5).

RLE can be wastful when there are many runs of length one. A simple
optimization is to encode the (remaining) run-length only after two same
symbols in a row. This could be called lazy RLE.

Example 19: The lazy RLE of Ly from Example 16 begins:

oreelrecee(ieeZaco(ee3l.

RLE alone does not compress the BEW'T very well in general but can be
useful when combined with other methods.

Jlekuusa 12. CekBenupoBanue JIHK

Move-to-front

Move-to-front (MTF) enceding works like this:

¢ Maintain a list of all symbols of the alphabet. A symbol is encoded by
its position on the list. Note that the size of the alphabet stays the
same.

« VWhen a symbol occurs, it is moved to the front of the list. Frequent
symbols tend to stay near the front of the list and are therefore
encoded with small values.

After an MTF encoding of the BWT, the smallest values tend to be the
most frequent ones throughout the sequence. Thus a single glebal model
can achieve a good compression. This is what makes MTF encoding
context oblivious.

=]

list next symbol code

Example 20: The MTF encoding abn$ N
of L. = annb$aa is 0202330. abng

nab$
nab$
bna$
$bna
afbn

OCWWwNONO

(I - e e

Jlekuusa 12. CekBenupoBanue JIHK

There are also other techniques that transform the BWT into a sequence of
numbers.

Whatever the final sequence is — the plain BW'T, an RLE encoded BWT,
an MTF encoded BWT, or scmething else — It needs to be compressed
using an entropy encoder to achieve the best compression. However, the

model needed is much simpler than what would be needed for direct
encoding of the text. For example:

e The plain BWT can be compressed well using a single zeroth order

adaptive model. For a similar compression rate, the text needs to be
encoded using a complex higher order model.

e The MTF encoded BWT can be compressed well using a single zeroth
order semiadaptive model. An equivalent direct text compression would
need a higher order semiadaptive model.

Jlekuusa 12. CekBenupoBanue JIHK

Computing and inverting BWT

Let us assume that the last symbol of the text T[n — 1] = $ does not appear
anywhere else in the text and is smaller than any other symbaol. This
simplifies the algorithms.

To compute the BWT, we need to sort the rotations. With the extra
symbol at the end, sorting rotations is equivalent to sorting suffixes. The
sorted array of all suffixes is called the suffix array (SA).

F L SA

"$ /b a n a nla 6 |3

a|$% b a n a|n 5 |a §

aln a $ b a|n 3 |a n a §$
aln a n a $|b 1 |a n a n a §
bla n a n a| $ O |b a n a n a $
nljla $$ b a n| a 4 |n a $

n|la n a $ b a 2 |n a n a §

There are linear time algorithms for suffix sorting. The best ones are
complicated but fairly fast in practice. We will not described them here, but
they are covered on the course String Processing Algorithmes.

Jlekuusa 12. CekBenupoBanue JIHK

We will take a closer look at inverting the BWT, i.e., recovering the text 17
given its BWT.

Let M be the matrix obtained by rotating M one step to the right.

Example 21:

M - - M
$ b a n a n|a al$ b a n a n
a $ b a n a|n nla $ b a n a
a n a $ b a|n rotate njla n a $ b a
a n a n a $|b bla n a n a $
b a n a n a|$ $/'b a n a n a
n a $ b a nla aln a $ b a n
n a n a $ bla aln a n a $ b

e The rows of M’ are the rotations of T in a different order.

s In A" without the first column, the rows are sorted lexicographically. If
we sort the rows of A4’ stably by the first column, we obtain M.

This cycle M 225 A 2255 A is the key to inverse BWT.

Jdexnus 12. Cexpenupopanue JHK

¢ In the cycle, each column moves one step to the right and is permuted.
The permutation is fully determined by the last column of M, i.e., the
BWT.

e By repeating the cycle, we can reconstruct M from the BWT.

e To reconstruct T, we do not need to compute the whole matrix just
ONne row.

Example 22:

...... . Bm————— F-----a ag----- $tb----a
------ n n------ a-----n HEEEEE af----n
IR rotate PTIIIIT son 87TTTTTR roage BETTTTT o @B----n
------ $ P-—-——-=- b-----% $b----- ba----%
------ a a------ n-----a an----- na----a
------ a a------ n-----a an----- na----a
$ba---a $ban--a $bana-a $banana
—— atb---n ot a$ba--n - a$ban-n - a$banan
rotate rotate rotate rotate
At ana---n P anag--n g ana$b-n P2 anaf$ban
&ﬂt Eﬂﬁ_"'b &b_ﬂgt E_D.E.n"b &sot anaﬂﬂ'b &—ﬂt E.HE.HE.EE
ban---% bana--8 banan-$§ banana§
na$(---a na$b--a na$ba-a na$bana

nan---a nana--a nanas-a nana$ba

Jlekuusa 12. CekBenupoBanue JIHK

The permutation that transforms M’ into M is called the LF-mapping.

e LF-mapping is the permutation that stably sorts the EWT L, i.e.,
F[LFi]] = L[i]. Thus it is easy to compute from L.

¢ Given the LF-mapping, we can easily follow a row through the
permutations.

Example 23:

5 8B o p el
P o B B |

Jlekuusa 12. CekBenupoBanue JIHK

Here is the algorithm.

Algorithm 24: Inverse BW'T
Input: BWT L[0..n]
Qutput: text T'[0..n]
Compute LF-mapping:
(1) for i+ 0 to n do R[i] = (L[i],i)
(2) sort R (stably by first element)
(3) for i+ 0 to n do
(4) (-,j) « Rli]; LF[j] +1
Reconstruct text:
(5) j + position of $in L
(6) for i+ n downto O do
(7) T[i] < L]
(8) j + LF[j]
(9) return T

The time complexity is linear if we sort K using counting sort.

Jlekuusa 12. CekBenupoBanue JIHK

Summary of BWT algorithm

Suffix array of string X.:
S(i) =], where X;...X, Is the j-th suffix lexicographically

BWT follows immediately from suffix array

Suffix array construction possible in Qin), many good Oln log n) algorithms

Reconstruct X from BWT(X) in time O(n)

Search for all exact occurrences of W in time O(|W)|)

BWT(X) is easier to compress than X

Jlekuusa 12. CekBenupoBanue JIHK

The de Brulin graph

Structure

In the de Bruijn graph, each node N represents a series of over-
lapping k-mers (cf. Fig. 1 for a small example). Adjacent k-mers
overlap by k — 1 nucleotides. The marginal information con-
tained by a k-mer is its last nucleotide. The sequence of those
final nuclectides is called the sequence of the node, or s(N).

Fach node N is attached to a twin node N, which repre sents
the reverse series of reverse complement k-mers. Thisensures that
overlaps between reads from opposite strands are taken into ac-
count. Note that the sequences attached toa node and its twin do
not need to be reverse complements of each other.

The union of a node N and its twin N is called a “block.”
From now on, any change to a node is implicitly applied sym-
metrically to its twin. A block therefore has two distinguishable
sides, inanalogy tothe “k-meredges” described in Pevzner et al.’s
2001 paper.

Modes can be connected by a directed "arc.” In that case, the
last k-mer of an arc’s origin node overlaps with the First of its
destination node. Because of the symmetry of the blocks, if an arc

Jlekuusa 12. CekBenupoBanue JIHK

a

.:'l-n.l-.___,a'._.'::l::.
ACCA
G g S Aw®
&5y AL / éﬂﬁ?’eﬁ%’?’
CTG o ATTG SEES
Lo LOY O "L‘F
W e i
u?riﬁ%? &"%wﬁf
LY
2
o

A Ay

Figure 1. 5chematic representation of our implementation of the de
Bruijn graph. Each node, represented by a single rectangle, represents a
series of overlapping kmers (in this case, k= 5), listed directly above or
below. (Red) The last nucleotide of each k-mer. The sequence of those
final nuclectides, copied in large letters in the rectangle, is the sequence
of the node. Thetwin node, directly attached to the nede, either belowor
above represents the reverse series of reverse complement kmers. Arcs
are represented as arrows between nodes. The last kmer of an arc’s origin
overlaps with the first of its destination. Each arc has a symmetric arc.
MNote that the twe nodes on the kft could be merged into one without
loss of information, because they form a chain.

Jlekuusa 12. CekBenupoBanue JIHK

goes from node A to B, a symmetric arc goes from B to A. Any
modification of one arc is implicitly applied symmetrically to its
paired arc.

Un these nodes and arcs, reads are mapped as
versing the graph. Extracting the nucleotide sequence from a
path is straightforward given the initial k-mer of the frst node
and the sequences of all the nodes in the path.

i

paths” tra-

Construction

The reads are first hashed according toa predefined k-mer length.
This variable k is limited on the upper side by the length of the
reads being hashed, to allow for a small amount of overlap, usu-
ally k =21 for 25-bp reads. Smaller k-mers increase the connec-
tivity of the graph by simultaneously increasing the chance of
observing an overlap between two reads and the number of am-
biguous repeats in the graph. There is therefore a balance be-
tween sensitivity and specificity determined by k

Jlekuusa 12. CekBenupoBanue JIHK

For each k-mer observed in the set of reads, the hash table
records the [of the first read encountered containing that k-mer
and the position of its occurrence within that read. Each k-mer is
recorded simultaneously to its reverse complement. To ensure
that each k-mer cannot be its own reverse complement, k must be
odd. This first scan allows us to rewrite each read as a set of
original k-mers combined with overlaps with previously hashed
reacs. We call this new representation of the read’s sequence the
“roadmap.”

A second database is created with the opposite information.
It records, for each read, which of its original k-mers are over-
lapped by subsequent reads. The ordered set of original k-mers of
that read is cut each time an overlap with another read begins or
ends. For each uninterrupted sequence of original k-mers, a node
is created.

Finally, reads are traced through the graph using the road-
maps. KFnowing the corespondence between original k-mers and
the newly created nodes, Velvet proceeds from one node to the
next, creating a new directed arc or incrementing an existing one
as appropriate at each step.

Jlekuusa 12. CekBenupoBanue JIHK

Simplification

After constructing the graph, itis generally possible to simplify it
without any loss of information. Blocks are interrupted each time
a read starts or ends. This leads to the formation of “chains” of
blocks, or linear connected subgraphs. This fragmentation of the
graph costs memory space and lengthens calculation times.

These chains can be easily simplified. Whenever a node A
has only one outgoing arc that points toanother node B that has
only one ingoing arc, the two nodes (and their twins) are merged.
lteratively, chains of blocks are collapsed into single blocks.

The simplification of two nodes into one is analogous to the
conventional concatenation of two character strings, and also to
some string graph based methods . This straightfor-
ward transformation involves transferring arc, read, and se-
quence information as appropriate.

Jlekuusa 12. CekBenupoBanue JIHK

k-mer

“k-mer”is a substring of length k

50 GGCGATTCATCG

mer: from Greek meaning “part”

A 4-mer of S: ATTC
All 3-mersofS: GGC
GCG
CGA
GAT
ATT
TTC
TCA
CAT
ATC

TCG

I'll use “k-1-mer”to refer to a substring of length k - 1

Jlekuusa 12. CekBenupoBanue JIHK

As usual, we start with a collection of reads, which are substrings of
the reference genome.

AAA, AAB, ABB, BBB, BBA

AAB is ak-mer (k=3). AAisitsleft k-1-mer, and AB isits right k-1-mer.

AAB 3-mer

/ \

AA AB
L R

AAB’sleft 2-mer AAB’sright 2-mer

Jlekuusa 12. CekBenupoBanue JIHK

Take each length-3 input string and split itinto two overlapping substrings
of length 2. Call these the left and right 2-mers.

AAABBBA
take all 3-mers: AAA, AAB, ABB, BBB, BBA

A7 /1 INNNONN

form L/R2-mers: AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
L R L R L R L R L R

Let 2-mers be nodes in a new graph. Draw a directed edge from each left
2-mer to corresponding right 2-mer:

AB

Each edge in this graph

(2@ /@ corresponds to a length-3
input string
BB

Jlekuusa 12. CekBenupoBanue JIHK

AAB »AB
AAA@E Ai‘@
BBl BBA
BBB

An edge corresponds to an overlap (of length k-2) between two k-1 mers.
More precisely, it corresponds to a k-mer from the input.

Jlekuusa 12. CekBenupoBanue JIHK

AAB 4AB
AAA (Y n ABB [BA
BBl BBA
BBB

BBB

If we add one more B to our input string: AAABBBBA, and rebuild the
De Bruijn graph accordingly, we get a multiedge.

Jlekuusa 12. CekBenupoBanue JIHK

MGS library de Bruijn Graph Genome

-''_

= - A -

|
—]
ry
— #

Typically a de Bruijn graph-based genome assembly algorthm works in twio

steps. In the first step, short reads are broken into small pieces (k-mers) and a
de Bruijn graph is constructed from those short pieces. In the next step, the
genome 15 derived from the de Brujin graph.

