
Using FHE in a binary ring Encryption and
Decryption with BLE Nano kit microcontroller

Zhanerke Temirbekova Erlanovna1*, Anna Pyrkova 2

1Faculty of Information Technology, Al-Farabi Kazakh national university, Almaty, Kazakhstan
2Faculty of Information Technology, Al-Farabi Kazakh national university, Almaty, Kazakhstan

Abstract. An integrated circuit (IC) that can be programmed to perform a
series of functions to control a range of electronic devices is a
microcontroller. What makes the microcontroller special is that it is
programmable. In this article, we're going to try to rely on the mbed
platform, the most common open source microcontroller development
platform; we use completely homomorphic encryption in a binary number
ring to ensure the data protection feature. Let us compare the time it takes
to perform encryption and decryption on a Visual Studio С ++ and a
Bluetooth Low Energy (BLE) Nano kit microcontroller. Experimental
results show that the device can complete a fully homomorphic encryption
in a binary number ring in 64.2 microseconds, which is reasonable in a real
application scenario and illustrates the feasibility of implementing a more
complex cryptographic system using a microcontroller.

1. Introduction
Microcontroller can be easily adopted in various applications with a variety of peripherals
due to its merits of small size, simple architecture. One kind of microcontroller with an
open source platform is the BLE Nano Kit [1-2]. The smallest BLE production board on the
market is the BLE Nano.

In short, due to its low cost, cross-OS scalability, open source and easy use features,
BLE Nano Kit has a wide developing future [3-4]. As a consequence, on this framework,
different multifunctional applications can be created. The aim of a scientific article is to
perform on the microcontroller of the BLE Nano Kit on a Windows block cipher and
modern cryptographic algorithms on the mbed platform and Visual Studio C++, such as
completely homomorphic encryption in a binary number ring. The execution time of
various algorithms in the microcontroller and the personal computer is then compared.

As follows, the rest of the paper is organized. In Section 2, we summarize the key
features and applicability of a binary number ring for both block cipher and completely
homomorphic encryption. We present the running time of various algorithms in our
microcontroller and PC (personal computer) and problems in Section 3, as well as address
the adoption of the strategy. Finally, we are reporting the final findings of the paper in
Section 4.

* Corresponding author: temyrbekovazhanerke2@gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 202, 15002 (2020)	 https://doi.org/10.1051/e3sconf/202020215002
ICENIS 2020

2. Cryptographic backgrounds
The key features and benefits of block cipher and completely homomorphic encryption in a
binary number ring, both proposed technologies, are briefly discussed in this section.

2.1 Block cipher

A block cipher is a deterministic algorithm in cryptography that operates on fixed-length
groups of bits, called blocks, with an unvarying transformation identified by a symmetric
key. In the design of many cryptographic protocols, block ciphers are significant
elementary components and are commonly used to enforce bulk data encryption.

We selected the commonly used Advanced Encryption Standard (AES) encryption[5]
from the symmetric block cipher algorithm. In both software and hardware, AES is based
on a design concept known as a substitution-permutation network, a combination of both
substitution and permutation, and is fast (Fig.1).

(a) (b)

Fig. 1. a and b AES encryption and decryption steps

AES consists of two Main Parts:
1. Method for Encryption or Decryption:

The block cipher uses the four following operations in each round:
• SubBytes: A nonlinear substitution box called the AES S-Box transforms each byte

of the sequence. The S-Box has been carefully designed in the Block cipher and the
cipher uses only one S-Box in the encryption process.

• ShiftRows: A transposition step that ensures that a different number of byte
positions are transferred to the last three rows of the array.

• MixColumns: To generate even more diffusion, mix every column in the series.
• Addkey: Using bitwise XOR, each array byte is mixed with a sub-key material byte,

often called round-key. The sub-key is generated by "key expansion" and is
extracted using a Rijndael key-schedule from the main cipher key.

Encryption method: Begins with AddKey with Key0. Then go to the loop and do
SubBytes, ShiftRows, MixColumns, Addkey, each circle with different circle keys in that
order for 9 circles. Then go to the final circle (circle 10) and repeat, except for
MixColumns, the same previous feature in the loop.

Decryption method: in every stage it is reverse of the encryption process, which implies
that the first circle of decryption is the tenth circle of the encryption and it uses the invers
functions of MixColumns, SubBytes, ShiftRows and us. You should assume the
arrangement of keys and reverse it as it begins with Addkey10 instead of Addkey0 as it was
in the encryption phase.
2. Key generation.

2

E3S Web of Conferences 202, 15002 (2020)	 https://doi.org/10.1051/e3sconf/202020215002
ICENIS 2020

2. Cryptographic backgrounds
The key features and benefits of block cipher and completely homomorphic encryption in a
binary number ring, both proposed technologies, are briefly discussed in this section.

2.1 Block cipher

A block cipher is a deterministic algorithm in cryptography that operates on fixed-length
groups of bits, called blocks, with an unvarying transformation identified by a symmetric
key. In the design of many cryptographic protocols, block ciphers are significant
elementary components and are commonly used to enforce bulk data encryption.

We selected the commonly used Advanced Encryption Standard (AES) encryption[5]
from the symmetric block cipher algorithm. In both software and hardware, AES is based
on a design concept known as a substitution-permutation network, a combination of both
substitution and permutation, and is fast (Fig.1).

(a) (b)

Fig. 1. a and b AES encryption and decryption steps

AES consists of two Main Parts:
1. Method for Encryption or Decryption:

The block cipher uses the four following operations in each round:
• SubBytes: A nonlinear substitution box called the AES S-Box transforms each byte

of the sequence. The S-Box has been carefully designed in the Block cipher and the
cipher uses only one S-Box in the encryption process.

• ShiftRows: A transposition step that ensures that a different number of byte
positions are transferred to the last three rows of the array.

• MixColumns: To generate even more diffusion, mix every column in the series.
• Addkey: Using bitwise XOR, each array byte is mixed with a sub-key material byte,

often called round-key. The sub-key is generated by "key expansion" and is
extracted using a Rijndael key-schedule from the main cipher key.

Encryption method: Begins with AddKey with Key0. Then go to the loop and do
SubBytes, ShiftRows, MixColumns, Addkey, each circle with different circle keys in that
order for 9 circles. Then go to the final circle (circle 10) and repeat, except for
MixColumns, the same previous feature in the loop.

Decryption method: in every stage it is reverse of the encryption process, which implies
that the first circle of decryption is the tenth circle of the encryption and it uses the invers
functions of MixColumns, SubBytes, ShiftRows and us. You should assume the
arrangement of keys and reverse it as it begins with Addkey10 instead of Addkey0 as it was
in the encryption phase.
2. Key generation.

In order to generate enough keys for each circle in the encryption, decryption process,
RotWord, SubBytes and XOR bitwise operation are needed. Each circle operates with
different keys created by the method of key generation.

2.2 Fully homomorphic encryption in a binary number ring

Homomorphic encryption is a type of encryption on encrypted data that performs arbitrary
computations. We may keep our confidential data in encrypted format in cloud storage, but
if you want to do some calculation on cipher text, the key must be shared with cloud service
providers who may allow our data to be abused. Instead, the Homomorphic Encryption
approach is used to prevent sharing the key with cloud service providers. Searching,
sorting, addition, multiplications performed on cipher text involves the computations.

Homomorphic encryption has drawn widespread attention from scholars for its specific
success among so many cryptographies [6-7]. Popular cryptography cannot explicitly
measure encrypted data, but homomorphic encryption will automatically encrypt the
operational results of homomorphic encryption. In the fields of secure multi-party
computing, electronic voting, cipher text scanning, encrypted mail filtering, mobile cipher,
the application prospect of homomorphic encryption is broad and cheerful. Finally, security
analysis is reviewed and more testing methods are highlighted.

In this encryption method, homomorphic encryption seeks to support by enabling
unique types of computations to be performed on cipher text that produces an encrypted
result that is also in cipher text. The product of operations performed on the plaintext is the
product. Case in point, one person might add two encrypted numbers and then another
person might decrypt the outcome without the significance of the individual numbers being
able to be identified by any of them.

By using ideal lattices, Craig Gentry introduced completely homomorphic encryption
based on bootstrapping over partially homomorphic encryption. It is restricted because, in
some way, any cipher text is noisy, and this noise grows as one ad and multiplies cipher
texts. Gentry have shown that a self-eMbedding recursion can turn any boot trappable
Somewhat Homomorphic Encryption scheme into a Completely Homorphic Encryption.
The bootstrapping procedure effectively "updates" the cipher text in the case of Gentry's
"noisy" scheme by applying the decryption procedure homomorphically to it, thereby
obtaining a new cipher text that encrypts the same value as before but has a lower instance
of noise [8]. Whenever the noise becomes too complicated, the cipher text is regularly
"refreshed."

Fully homomorphic encryption in a binary number ring. The scheme of completely
homomorphic encryption, which Gentry suggested, can be considered using the example of
calculations in 𝑍𝑍" [9-13].

Encryption
The data encryption method can be interpreted as follows:
1. We pick an arbitrary strange number 𝑝𝑝 = 2𝑘𝑘 + 1, which is a secret parameter. Let

𝑚𝑚 ∈ {0,1}.
2. The number 𝑧𝑧 ∈ 𝑍𝑍" is compiled such that 𝑧𝑧 = 2𝑟𝑟 +𝑚𝑚, where 𝑟𝑟 is an arbitrary

number. This means that 𝑧𝑧 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2
3. In the encryption method, each m is associated with the number 𝑐𝑐 = 𝑧𝑧 + 𝑝𝑝𝑝𝑝, where

𝑞𝑞 is chosen arbitrarily. Thus, 𝑐𝑐 = 2𝑟𝑟 +𝑚𝑚 + (2𝑘𝑘 + 1) ∗ 𝑞𝑞. It is easy to see that
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = (𝑚𝑚 + 𝑞𝑞)𝑚𝑚𝑚𝑚𝑚𝑚2 and therefore an attacker can determine only the parity of
the output of encryption.

Decryption
Let it be known about the encrypted number c and the secret p. The method of

decrypting the information should then include the following actions:

3

E3S Web of Conferences 202, 15002 (2020)	 https://doi.org/10.1051/e3sconf/202020215002
ICENIS 2020

1. Using a secret parameter decoding 𝑝𝑝: 𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (𝑧𝑧 + 𝑝𝑝𝑝𝑝)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 +
(𝑝𝑝𝑝𝑝)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 where 𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is called noise

2. Obtaining the original bit of encryption: 𝑚𝑚 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2.
Rationale:
Let there be two bits 𝑚𝑚9,𝑚𝑚" 	∈ 𝑍𝑍"	and they are associated with a pair of numbers 𝑧𝑧9 =

2𝑟𝑟9 + 𝑚𝑚9 and 𝑧𝑧" = 2𝑟𝑟" + 𝑚𝑚". Let us take the secret parameter 𝑝𝑝 = 2𝑘𝑘 + 1 and encrypt the
data: 𝑐𝑐9 = 𝑧𝑧9 + 𝑝𝑝𝑞𝑞9 and 𝑐𝑐" = 𝑧𝑧" + 𝑝𝑝𝑞𝑞" .

The sum of these numbers is calculated:
 𝑐𝑐9 + 𝑐𝑐" = 𝑧𝑧9 + 𝑝𝑝𝑞𝑞9 + 𝑧𝑧" + 𝑝𝑝𝑞𝑞" = 𝑧𝑧9 + 𝑧𝑧" + 𝑝𝑝(𝑞𝑞9 + 𝑞𝑞") = 2𝑟𝑟9 +𝑚𝑚9 + 2𝑟𝑟" +𝑚𝑚" +

(2𝑘𝑘 + 1)(𝑞𝑞9 + 𝑞𝑞")
For the sum of these numbers, the decrypted message is the sum of the original bits

𝑚𝑚9𝑚𝑚": ;(𝑐𝑐9 + 𝑐𝑐")𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚<𝑚𝑚𝑚𝑚𝑚𝑚2 = (2(𝑟𝑟9 + 𝑟𝑟") +𝑚𝑚9 +𝑚𝑚")𝑚𝑚𝑚𝑚𝑚𝑚2 = 𝑚𝑚9 +𝑚𝑚". But without
knowing 𝑝𝑝, decoding the data is not possible:	;(𝑐𝑐9 + 𝑐𝑐")𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚<𝑚𝑚𝑚𝑚𝑚𝑚2 = 𝑚𝑚9 +𝑚𝑚" + 𝑞𝑞9 +
𝑞𝑞".

Figure 2 illustrates that an addition operation is a completely homomorphic encryption
in a binary ring. In visual studio C++ 2019 and in the BLE Nano kit microcontroller on the
mbed platform using C++, completely homomorphic encryption in the binary ring was
enforced.

1

0

1

Fig. 2. The result of homomorphic encryption with the operation of adding.

Similarly, the operation of multiplication is checked:
	𝑐𝑐9𝑐𝑐" = (𝑧𝑧9𝑝𝑝𝑞𝑞9)(𝑧𝑧"𝑝𝑝𝑞𝑞") = 𝑧𝑧9𝑧𝑧" + 𝑝𝑝(𝑧𝑧9𝑞𝑞" + 𝑧𝑧"𝑞𝑞9) + 𝑝𝑝"𝑞𝑞9 == (2𝑟𝑟9 +𝑚𝑚9)(2𝑟𝑟" +

𝑚𝑚") + (2𝑘𝑘 + 1);(2𝑟𝑟9 + 𝑚𝑚9)𝑞𝑞" + (2𝑟𝑟" +𝑚𝑚")𝑞𝑞9< = 4𝑟𝑟9𝑟𝑟" + 2(𝑟𝑟9𝑚𝑚" + 𝑟𝑟"𝑚𝑚9) + 𝑚𝑚9𝑚𝑚" +
2𝑘𝑘(2𝑟𝑟9𝑞𝑞" +𝑚𝑚9𝑞𝑞" + 2𝑟𝑟"𝑞𝑞9 + 𝑚𝑚"𝑞𝑞9) + 2𝑟𝑟9𝑞𝑞" +𝑚𝑚9𝑞𝑞" + 2𝑟𝑟"𝑞𝑞9 + 𝑚𝑚"𝑞𝑞9

The decryption procedure must be applied to the results obtained, which will result in
the following: ;(𝑐𝑐9𝑐𝑐")𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚<𝑚𝑚𝑚𝑚𝑚𝑚2 = (4𝑟𝑟9𝑟𝑟" + 2(𝑟𝑟9𝑚𝑚" + 𝑟𝑟"𝑚𝑚9)+𝑚𝑚9𝑚𝑚")𝑚𝑚𝑚𝑚𝑚𝑚2 = 𝑚𝑚9𝑚𝑚".

Figure 3 shows that a multiplication operation is a completely homomorphic encryption
in a binary ring.

1

 0

Encrypt

Encrypt

 Decrypt

352455854

936455740

Add

1288911594

Encrypt

Encrypt

352455854

936455740 Multiplication

4

E3S Web of Conferences 202, 15002 (2020)	 https://doi.org/10.1051/e3sconf/202020215002
ICENIS 2020

 0

Fig. 3. The result of the multiplication operation of homomorphic encryption.

3. Performance
Here, on the mbed platform, we will implement fully homomorphic encryption in a binary
ring on a BLE Nano Kit microcontroller.

How does programming operate?
The mbed microcontroller is connected to our PC via USB (Universal Serial Bus), it

looks like a USB flash drive. This small disk is represented by the mbed interface and
allows you to save the BLE Nano kit microcontroller hexadecimal files that we want to run
directly on mbed without the need for a driver. It is not automatically loaded into the flash
memory of the internal microcontroller when saving the .hex file on the mbed disk.

The mbed searches at the disk for the most recent .hex file it can find when we hit reset.
If a new file exists, it uses the JTAG interface to load it into the internal FLASH memory of
the microcontroller. If the current binary has already been loaded, it will not be loaded
again. It then begins working the microcontroller.

How does a serial USB work?
The USB serial / com interface is also reflected by the mbed interface. Basically, this is

a UART-USB bridge which connects to the UART interface. Therefore, if we send
characters from the target microcontroller's UART, they will be read and transferred via
USB using the mbed interface.

We use the terminal emulator "Tera Term" for programming devices.
For the connection of microcontroller and terminal, there are two main points needed to

be paid more attentions.
1) Serial Communications: Serial Communications is the first stage. For each 8 bits of

data transfer, in microcontroller serial communications with a contact style UART interface
with even parity bit and 2 stop bits.

2) Protocol Parameter Selection and Baud Rate: The serial baud rate of the
microcontroller contact form is regulated by an external oscillator's clock signal. There are
two external oscillators for the BLE Nano Kit microcontroller. The slow clock has a
frequency of 32,768 kHz. The frequency of the main clock is 16 MHz and the baud rate is
about 9,600 bps.

Table 1 presents our experimental findings for selected strategies to protect privacy. On
the devices used, we calculate the performance overhead and we estimate overhead
memory/communication. We concentrate on the duration of primary activities/phases, such
as the duration of encryption, the time of decryption. All time values are determined from
10 iterations as mean values.

Decrypt

330059307574901960

5

E3S Web of Conferences 202, 15002 (2020)	 https://doi.org/10.1051/e3sconf/202020215002
ICENIS 2020

Table 1. Running time of different algorithms in our microcontroller and pc

Algorithms Microcontroller BLE Nano
Kit

Windows 7

AES 128 bit Encrypt 42.2 ms 26.358 ms
AES 128 bit Decrypt 39.5 ms 29.013 ms
FHE in a binary ring

Encrypt
64.2 ms 56.7363 ms

FHE in a binary ring
Decrypt

262.8 ms 250.9675 ms

The efficiency overhead of selected privacy protection techniques on the
microcontroller and PC is shown in Figure 4.

Fig. 4. Running Time of Different Algorithms in microcontroller BLE Nano Kit and PC

Using terminal Tera Term to submit data and cypher keys from a computer, the
encryption was checked. We would then run a series of exams. We compare the findings
with the Visual Studio C++ operations directly invoked from a Windows 7 x64 device
environments and the BLE Nano microcontroller package using C++ on the mbed
framework. Table 1 and figure 4 display the effects. From the observations, it can be shown
that the output of the microcontroller is comparable to the output. The only variation in the
transmission protocol that is not well configured in our implementation is caused by
overhead.

4. Conclusion
This work presents the performance and memory limitations on different types of devices
that can be used in IoT for existing cryptographic primitives and schemes. Symmetric
ciphers and hash functions can now be easily integrated into IoT services using restricted
devices. In this paper, in terms of speed, flexibility and protection, the use of hardware
platforms to create a real-life application has proved satisfactory and promising. We have
used the mbed platform's strong compatibility with the microcontroller in our research
work. As one of the most popular BLE Nano Kit microcontrollers, different security
features can be used in the application. However, compared to Visual Studio C++ from a
Windows 7x64 computer environment due to the limited processing power and memory of
the microcontroller BLE Nano Kit, BLE Nano Kit yields a fairly poor performance,
especially when AES algorithms are involved with FHE in a binary ring.

0

50

100

150

AES 128
bit Encrypt

AES 128
bit Decrypt

FHE in a
binary ring

Encrypt

FHE in a
binary ring

Decrypt

Microcontroller

Windows

6

E3S Web of Conferences 202, 15002 (2020)	 https://doi.org/10.1051/e3sconf/202020215002
ICENIS 2020

Table 1. Running time of different algorithms in our microcontroller and pc

Algorithms Microcontroller BLE Nano
Kit

Windows 7

AES 128 bit Encrypt 42.2 ms 26.358 ms
AES 128 bit Decrypt 39.5 ms 29.013 ms
FHE in a binary ring

Encrypt
64.2 ms 56.7363 ms

FHE in a binary ring
Decrypt

262.8 ms 250.9675 ms

The efficiency overhead of selected privacy protection techniques on the
microcontroller and PC is shown in Figure 4.

Fig. 4. Running Time of Different Algorithms in microcontroller BLE Nano Kit and PC

Using terminal Tera Term to submit data and cypher keys from a computer, the
encryption was checked. We would then run a series of exams. We compare the findings
with the Visual Studio C++ operations directly invoked from a Windows 7 x64 device
environments and the BLE Nano microcontroller package using C++ on the mbed
framework. Table 1 and figure 4 display the effects. From the observations, it can be shown
that the output of the microcontroller is comparable to the output. The only variation in the
transmission protocol that is not well configured in our implementation is caused by
overhead.

4. Conclusion
This work presents the performance and memory limitations on different types of devices
that can be used in IoT for existing cryptographic primitives and schemes. Symmetric
ciphers and hash functions can now be easily integrated into IoT services using restricted
devices. In this paper, in terms of speed, flexibility and protection, the use of hardware
platforms to create a real-life application has proved satisfactory and promising. We have
used the mbed platform's strong compatibility with the microcontroller in our research
work. As one of the most popular BLE Nano Kit microcontrollers, different security
features can be used in the application. However, compared to Visual Studio C++ from a
Windows 7x64 computer environment due to the limited processing power and memory of
the microcontroller BLE Nano Kit, BLE Nano Kit yields a fairly poor performance,
especially when AES algorithms are involved with FHE in a binary ring.

0

50

100

150

AES 128
bit Encrypt

AES 128
bit Decrypt

FHE in a
binary ring

Encrypt

FHE in a
binary ring

Decrypt

Microcontroller

Windows

References
1. Jose Angel, BLE Nano hardware development kit for Bluetooth Low Energy (2015)
2. S. Aguilar, R. Vidal, C. Gomez, Opportunistic Sensor Data Collection with

Bluetooth Low Energy. Sensors (2017)
3. C. Gomez, J. Oller, J. Paradells, Overview and Evaluation of Bluetooth Low

Energy: An Emerging Low-Power Wireless Technology. Sensors (2012)
4. Atmel Corporation,"Integrating the Internet of Things: Necessary building blocks for

broad market adoption", San Jose, USA: Atmel, 0776 Corporate IOT WhitePaper US
102014.

5. Jessica Chani Cahuana, Chalmers, A Search for a Convenient Data Encryption
Algorithm For an Internet of Things Device. (2016)

6. Suhad Shakir, Hilal Adnan Fadhil, Zahereel I. Abdul Khabib, Rasim Azeez Kadhim.
Cloud computing Data security: AES Encryption algorithm and PRT-PVD
Steganography Technique. Australian Journal of Basic and Applied Sciences, 9(19)
Special (2015)

7. Daemen, Joan; Rijmen, Vincent. "AES Proposal: Rijndael". National Institute of
Standards and Technology. - P. 10-17, (2003)

8. Ashokkumar C.; Ravi Prakash Giri; Bernard Menezes. IEEE European Symposium on
Security and Privacy (EuroS&P). pp. 261–275, (2016)

9. N.P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small
key and ciphertext sizes,” public Key Cryptography-PKC Springer Berlin Heidelberg,
vol. 6056, P. 420-443. (2010)

10. Gentry A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University,
P. 199 (2009)

11. Gentry, C. A Fully Homomophic Encryption Scheme. Ph.D. Thesis, Standford
University, Stanford, CA, USA, (2009)

12. Craig Gentry. . In the 41st ACM Symposium on Theory of Computing (STOC),
(2009)

13. W. Lv, F. Meng, C. Zhang, Y. Lv, N. Cao, and J. Jiang. A general architecture of iot
system. In 2017 IEEE International Conference on Computational Science and
Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous
Computing (EUC), volume 1, pages 659–664, July (2017)

7

E3S Web of Conferences 202, 15002 (2020)	 https://doi.org/10.1051/e3sconf/202020215002
ICENIS 2020

