

RESEARCH PAPERS | Published: 16 July 2020

Predicting Characteristics of the Potentially Binding Sites for miRNA in the mRNA of the TCP Transcription Factor Genes of Plants

A. K. Rakhmetullina, A. Yu. Pyrkova, A. V. Goncharova & A. T. Ivashchenko

Russian Journal of Plant Physiology 67, 606-617(2020) | Cite this article

63 Accesses | Metrics

Abstract

The expression of the TCP transcription factor family genes depends on miRNA, whose effect on the translation of their mRNA is poorly studied. Interactions between miRNA and mRNA were studied with the MirTarget program, which allows estimating of quantitative characteristics of binding of the whole nucleotide sequence of miRNA to mRNA. The analysis of binding of 125 miRNAs to mRNAs of 28 genes of the TCP family of *Triticum aestivum* L. revealed eight target genes for miR319-3p, miR444a-3p, miR5086-5p, miR9666a-3p, and miR978o-3p. miRNA binding sites in mRNA of the TCP family genes of *T. aestivum* were located in the CDS only. Only 12 of 22 mRNAs of the TCP family genes of *Oryza sativa* L.

hounded to the miD140th to miD10460 to miD1040 to miD10t00 to

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

AC213524.3_FGP003, AC233950.1_FGP002, and GRMZM2G034638_P01. Only one miRNA was bound to mRNAs of the genes GRMZM2G035944_P01, AC190734.2_FGP003, and AC205574.3_FGP006. miRNA binding sites were located in the 5'UTR and CDS regions of mRNAs of the TCP family genes of Z. mays. Ten of 27 TCP family genes of Arabidopsis thaliana (L.) Heynh. were shown to be targets for the miR319-3p, miR4228-5p, miR4228-3p, miR5021-5p, miR5658-5p, and miR8181-5p out of 429 miRNAs of A. thaliana. mRNAs of the AT1G53230 and AT2G31070 genes had binding sites for the miR319c-3p, miR5021-5p, and miR5658-5p, while mRNA of the AT3G15030 gene had binding site for the miR319a-3p and miR4228-3p. Two miRNAs bounded to mRNAs of the genes AT1G69690, AT3G02150, and AT3G47620. One miRNA bounded to mRNAs of the genes AT1G30210, AT4G18390, and AT5G08330. miRNA binding sites were located in the 5'UTR, CDS and 3'UTR regions of mRNA of the TCP gene family of A. thaliana. mRNAs of six groups of the TCP family genes had binding sites for the miR319-3p, miR444a-3p, miR5021-5p, miR5658-5p, and miR2102-5p, which encode the oligopeptides QRGPLQS, STSETS, SSSSSS, HHHHHHH, GGGGGG, and AAAAAA conservative in the TCP family proteins of different plant species. Quantitative characteristics of miRNA binding to mRNAs of plant transcription factors of the TCP family, which participate in regulation of growth and development of plants, have been predicted.

This is a provious of subscription content, access via your institution

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

Learn more about Institutional subscriptions

REFERENCES

1 Li, S., The *Arabidopsis thaliana* TCP transcription factors: a broadening horizon beyond development, *Plant Signal. Behav.*, 2015, vol. 10: e1044192. https://doi.org/10.1080/15592324.2015.1044192

CAS Article PubMed PubMed Central Google Scholar

² Manassero, N., Viola, I., Welchen, E., and Gonzalez, D., TCP transcription factors: architectures of plant form, *Biomol. Concepts*, 2013, vol. 4, p. 111. https://doi.org/10.1515/bmc-2012-0051

CAS Article PubMed Google Scholar

3 Sengupta, A. and Hileman, L., Novel traits, flower symmetry, and transcriptional autoregulation: new hypotheses from bioinformatic and experimental data, *Front. Plant Sci.*, 2018, vol. 9: 1561. https://doi.org/10.3389/fpls.2018.01561

Article PubMed PubMed Central Google Scholar

4 Mart, M. and Cubas, P., TCP genes: a family snapshot ten years later, *Trends*

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

https://doi.org/10.1105/tpc.113.113159

<u>CAS Article PubMed PubMed Central Google Scholar</u>

7 Navarro, L., Dunoyer, P., Jay, F., Arnold, B., and Dharmasiri, N., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling, *Scien-ce*, 2006, vol. 312, p. 436. https://doi.org/10.1126/science.aae0382

CAS Article Google Scholar

8 Zhang, L., Zheng, Y., Jagadeeswaran, G., Li, Y., Gowdu, K., and Sunkar, R., Identification and temporal expression analysis of conserved and novel microRNAs in *Sorghum, Genomics*, 2011, vol. 98, p. 460.

https://doi.org/10.1016/j.ygeno.2011.08.005

CAS Article PubMed Google Scholar

9 Phillips, J.R., Dalmay, T., and Bartels, D., The role of small RNAs in abiotic stress, *FEBS Lett.*, 2007, vol. 581, p. 3592.

https://doi.org/10.1016/j.febslet.2007.04.007

CAS Article PubMed Google Scholar

10 Yan, Y., Wang, H., Hamera, S., Chen, X., and Fang, R., miR444a has multiple functions in the rice nitrate-signaling pathway, *Plant J.*, 2014, vol. 78, no. 1, p.

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

12 Tomotsugu, K., Fumihiko, S., and Masaru, O., Roles of miR319 and TCP transcription factors in leaf development, *Plant Physiol.*, 2017, vol. 175, p. 874. https://doi.org/10.1104/pp.17.00732

CAS Article Google Scholar

13 Li, Z., An, X., Zhu, T., Yan, T., Wu, S., Tian, Y., Li, J., and Wan, X., Discovering and constructing ceRNA-miRNA-target gene regulatory networks during anther development in maize, *Int. J. Mol. Sci.*, 2019, vol. 20, no. 14: e3480. https://doi.org/10.3390/ijms20143480

CAS Article PubMed Google Scholar

14 Yusuf, N.H., Ong, W.D., Redwan, R.M., Latip, M.A., and Kumar, S.V., Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (*Ananas comosus* var. *comosus*), *Gene*, 2016, vol. 571, p. 71. https://doi.org/10.1016/j.gene.2015.06.050

CAS Article Google Scholar

15 Wu, F.Y., Tang, C.Y., Guo, Y.M., Yang, M.K., Yang, R.W., Lu, G.H., and Yang, Y.H., Comparison of miRNAs and their targets in seed development between two maize inbred lines by high-throughput sequencing and degradome analysis, *PLoS One*, 2016, vol. 11, no. 7: e0159810.

https://doi.org/10.1051/journal.none.0150010

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

- T.D., Development-related miRNA expression and target regulation during staggered in vitro plant regeneration of Tuxpeño VS-53--5 maize cultivar, *Int. J. Mol. Sci.*, 2019, vol. 20, no. 9: e2079. https://doi.org/10.3390/ijms20092079
- 18 Wang, Y., Peng, M., Wang, W., Chen, Y., He, Z., Cao, J., Lin, Z., Yang, Z., Gong, M., and Yin, Y., Verification of miRNAs in ginseng decoction by high-throughput sequ-encing and quantitative real-time PCR, *Heliyon*, 2019, vol. 5, no. 4: e01418. https://doi.org/10.1016/j.heliyon.2019.e01418

Article PubMed PubMed Central Google Scholar

19 Aydinoglu, F. and Lucas, S.J., Identification and expression profiles of putative leaf growth related microRNAs in maize (*Zea mays* L.) hybrid ADA313, *Gene*, 2019, vol. 690, p. 57. https://doi.org/10.1016/j.gene.2018.12.042

CAS Article PubMed Google Scholar

20 Zhang, Q., Zhang, Y., Wang, S., Hao, L., Wang, S., Xu, C., Jiang, F., and Li, T., Characterization of genome-wide microRNAs and their roles in development and biotic stress in pear, *Planta*, 2019, vol. 249, no. 3, p. 693. https://doi.org/10.1007/s00425-018-3027-2

CAS Article PubMed Google Scholar

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

23 Garg, A. and Heinemann, U., A novel form of RNA double helix based on G·U and C·A⁺ wobble base pairing, *RNA*, 2018, vol. 24, p. 209. https://doi.org/10.1261/rna.064048.117

CAS Article PubMed PubMed Central Google Scholar

24 Dai, X., Zhuang, Z., and Zhao, P., Computational analysis of miRNA targets in plants: current status and challenges, *Brief. Bioinform.*, 2011, vol. 12, p. 115. https://doi.org/10.1093/bib/bbq065

CAS Article PubMed Google Scholar

25 Niyazova, R., Berillo, O., Atambayeva, Sh., Pyrkova, A., Alybayeva, A., and Ivashchenko, A., miR-1322 binding sites in paralogous and orthologous genes, *Mol. Phylogenet.*, 2014, vol. 2015, p. 962637.

https://doi.org/10.1155/2015/962637

CAS Article Google Scholar

26 Kamenova, S.U., The characteristics of miRNA binding sites in mRNA of *ZFHX3* gene and its orthologs, *Vavilov J. Genet. Breed.*, 2018, vol. 22, p. 438. https://doi.org/10.18699/VJ18.380

Article Google Scholar

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

plants, Russ. J. Plant Physiol., 2014, vol. 61, p. 807.

https://doi.org/10.1134/S1021443714050033

CAS Article Google Scholar

29 Bari, A., Orazova, A., and Ivashchenko, A., miR156- and miR171-binding sites in the protein-coding sequences of several plant genes, *Biomed. Res. Int.*, 2013, vol. 2013: 307145. https://doi.org/10.1155/2013/307145

CAS Article PubMed PubMed Central Google Scholar

Download references ±

Author information

Affiliations

Al-Farabi Kazakh National University, Almaty, Kazakhstan

A. K. Rakhmetullina, A. Yu. Pyrkova, A. V. Goncharova & A. T. Ivashchenko

Corresponding author

Correspondence to A. T. Ivashchenko.

Ethics declarations

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

Abbreviations: CDS—coding sequence; miRNA—small RNA that inhibits mRNA translation; mRNA—messenger ribonucleic acid; ΔG—free energy of miRNA binding; ΔGm—free energy of miRNA binding to a fully complementary nucleotide sequence; n.—nucleotide; TCP—the transcription factor family of plants (Teosinte branched1/Cincinnata/proliferating cell factor (TCP) family); 3'UTR—3'-untranslated region; 5'UTR—5'-untranslated region.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rakhmetullina, A.K., Pyrkova, A.Y., Goncharova, A.V. *et al.* Predicting Characteristics of the Potentially Binding Sites for miRNA in the mRNA of the TCP Transcription Factor Genes of Plants. *Russ J Plant Physiol* **67**, 606–617 (2020).

https://doi.org/10.1134/S1021443720040147

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings

Issue Date

July 2020

DOI

https://doi.org/10.1134/S1021443720040147

Keywords:

plant miRNA mRNA binding site genes transcription factor

Over 10 million scientific documents at your fingertips

Academic Edition Corporate Edition

HomeImpressumLegal informationPrivacy statementCalifornia Privacy StatementHow we use cookiesManage cookies/Do not sell my dataAccessibilityContact us

Not logged in - 49.12.85.158

Not affiliated

SPRINGER NATURE

© 2021 Springer Nature Switzerland AG. Part of Springer Nature.

Your privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy

Manage Settings