International Journal of

Mathematics and Physics

The International Journal of Mathematics and Physics is a peer-reviewed international journal covering all branches of mathematics and physics. The Journal particularly welcomes papers on modern problems of mathematics and physics, Calculus Mathematics, Algebra and Mathematical Analysis, Differential Equations and Mechanics, Informatics and Mathematical Modeling, Calculus Physics and Radio Physics, Thermophysics, Nuclear Physics, Nanotechnology.

International Journal of Mathematics and Physics is publishing two numbers in a year by al-Farabi Kazakh National University, al-Farabi ave., 71, 050040, Almaty, the Republic of Kazakhstan website: http://ijmph.kaznu.kz/

Any inquiry for subscriptions should be send to: Prof. Tlekkabul Ramazanov, al-Farabi Kazakh National University al-Farabi ave., 71, 050040, Almaty, the Republic of Kazakhstan e-mail: Tlekkabul.Ramazanov@kaznu.kz

EDITORIAL

The most significant scientific achievements are attained through joint efforts of different sciences, mathematics and physics are among them. Therefore publication of the Journal, which shows results of current investigations in the field of mathematics and physics, will allow wider exhibition of scientific problems, tasks and discoveries.

One of the basic goals of the Journal is to promote extensive exchange of information between scientists from all over the world. We propose publishing service for original papers and materials of Mathematical and Physical Conferences (by selection) held in different countries and in the Republic of Kazakhstan.

Creation of the special International Journal of Mathematics and Physics is of great importance because a vast amount of scientists are willing to publish their articles and it will help to widen the geography of future dissemination. We will also be glad to publish papers of scientists from all the continents.

The Journal will publish experimental and theoretical investigations on Mathematics, Physical Technology and Physics. Among the subject emphasized are modern problems of Calculus Mathematics, Algebra and Mathematical Analysis, Differential Equations and Mechanics, Informatics and Mathematical Modeling, Calculus of Approximations and Program Systems, Astronomy and Space Research, Theoretical Physics and Plasma Physics, Chemical Physics and Radio Physics, Thermophysics, Nuclear Physics and Nanotechnology.

The Journal is issued on the base of al-Farabi Kazakh National University. Leading scientists from different countries of the world agreed to join the Editorial Board of the Journal.

The Journal will be published two times a year by al-Farabi Kazakh National University. We hope to receive papers from many laboratories which are interested in applications of the scientific principles of mathematics and physics and are carrying out researches on such subjects as production of new materials or technological problems.

IRSTI 27.31.44

1*A. Altybay, 2M. Ruzhansky, 1N. Tokmagambetov

¹Al-Farabi Kazakh National University, department of Mechanics and Mathematics, Almaty, Kazakhstan

²Imperial College London, London, United Kingdom

*e-mail: arshyn.altybay@gmail.com

On numerical simulations of the 1d wave equation with a distributional coefficient and source term

Abstract. In this note, we illustrate numerical experiments for the one-dimensional wave equation with δ -like (delta like) terms. Our research is connecting the theory with the numerical realisations. By using results on very weak solutions introduced by Michael Ruzhansky with his co-authors, we investigate a corresponding regularized problem. In contrast to our expectations, the experiments show that the solution of the regularized problem has a "good" behaviour. Indeed, numerical experiments show that approximation methods work well in situations where a rigorous mathematical formulation of the problem is difficult in the framework of the classical theory of distributions. The concept of very weak solutions eliminates this difficulty, giving results of correctness for equations with singular coefficients. In the framework of this approach (very weak solutions), the expected physical properties of the equation can be reconstructed, for example, the distribution profile and the decay of the solutions for large times. Finally, we give a number of illustrations.

Key words: wave equation, numerical experiment, very weak solutions, distributional coefficient, singular source term, regularized problem, decay of solutions.

Introduction

In this paper, we follow the results of the paper

[4] and study the Cauchy-Dirichlet problem for the 1D-Wave Equation

$$\begin{cases} \partial_{tt}^2 u(t,x) - a(t) \partial_{xx}^2 u(t,x) = f(t,x), & (t,x) \in [0,T] \times [0,1], \\ u(t,0) = 0, t \in [0,T], \\ u(t,1) = 0, t \in [0,T], \\ u(0,x) = u_0(x), x \in [0,1], \\ \partial_t u(0,x) = u_1(x), x \in [0,1]. \end{cases}$$

The notion of very weak solutions has been introduced in [GR15] to analyse second order hyperbolic equations. In [3] and [5] Ruzhansky and Tokmagambetov applied it to show the well-posedness of the Landau Hamiltonian wave equations in distributional electro-magnetic fields. Also, in [2] were investigated very weak solutions for an acoustic problem of wave propagation through a discontinuous medium.

In this paper, we allow the coefficient a(t) and the source term f(t,x) to be distributional in t. One of the interesting cases is when $a(t)=1+\delta(t-t_0)$ and $f(t,x)=\delta(t-t_1)$ for some, in general, different t_0 and t_1 .

Numerical experiments

We start by regularizing a(t) and f(t,x) by the parameter ε , that is,

Printed in Kazakhstan

$$a_{\varepsilon}(t) = (a * \varphi_{\varepsilon})(t), \ f(t) = (f * \varphi_{\varepsilon})(t),$$

the convolution with the mollifier $\varphi_{\varepsilon}(t) = \frac{1}{\varepsilon} \varphi(t/\varepsilon)$, where

$$\varphi(t) = \begin{cases} \frac{1}{C} e^{\frac{1}{(t^2-1)}}, |t| \leq 1, \\ 0, & |t| > 1. \end{cases}$$
 Here C = 0.443994 so that $\int_{-1}^{1} \varphi(t) dt = 1$.

Instead of (1) consider a regularized problem

$$\begin{cases} \partial_{tt}^{2}u_{\varepsilon}(t,x) - a_{\varepsilon}(t)\partial_{xx}^{2}u_{\varepsilon}(t,x) = f_{\varepsilon}(t,x), \ (t,x) \in [0,T] \times [0,1], \\ u_{\varepsilon}(t,0) = 0, t \in [0,T], \\ u_{\varepsilon}(t,1) = 0, t \in [0,T], \\ u_{\varepsilon}(0,x) = u_{0}(x), x \in [0,1], \\ \partial_{t}u_{\varepsilon}(0,x) = u_{1}(x), x \in [0,1]. \end{cases}$$

From [4] it follows that the problem (1) has a unique very weak solution. It is given by a family of functions $\{u_{\varepsilon}(t,x)\}_{0<\varepsilon\leq 1}$. For each positive $\varepsilon\leq 1$, the function $u_{\varepsilon}(t,x)$ is a solution of the regularized problem (2) controlled by the estimate

 $||\partial_t^{\alpha}\partial_x^{\beta}u_{\varepsilon}(t,x)||_{L^2} \leq C\varepsilon^{-L-\alpha-\beta},$

for some C>0 and $L \ge 0$, for all $\alpha, \beta \in \mathbb{Z}_+$.

We put $u_0(x) \equiv 0, u_1(x) \equiv 0, a(t) = 1 +$ $\delta(t-t_0)$ and $f(t,x) = \delta(t-t_1)$. Then we get $a_{\varepsilon}(t) = 1 + \varphi_{\varepsilon}(t-t_0)$, $f_{\varepsilon}(t,x) = \varphi_{\varepsilon}(t-t_1)$. Finally, we have the following problem to solve numerically

$$\begin{cases} \partial_{tt}^{2}u_{\varepsilon}(t,x) - \left(1 + \varphi_{\varepsilon}(t - t_{0})\right)\partial_{xx}^{2}u_{\varepsilon}(t,x) = \varphi_{\varepsilon}(t - t_{1}), \ (t,x) \in [0,T] \times [0,1], \\ u_{\varepsilon}(t,0) = 0, t \in [0,T], \\ u_{\varepsilon}(t,1) = 0, t \in [0,T], \\ u_{\varepsilon}(0,x) = 0, x \in [0,1], \\ \partial_{t}u_{\varepsilon}(0,x) = 0, x \in [0,1]. \end{cases}$$

In the following, we demonstrate numerical simulations. All calculations are made in C++ by using the sweep method. For all simulations $\Delta t =$ $\Delta x = 0.01$. In all computer simulations, we use

Matlab R2017b. At first, we consider the case when $t_0 = t_1 = 0.2$. In Figure 1 and Figure 2, we see the decay of the solution $u_{\varepsilon}(t,x)$ with respect to the time t of the regularised problem (3), for $\varepsilon = 0.8$.

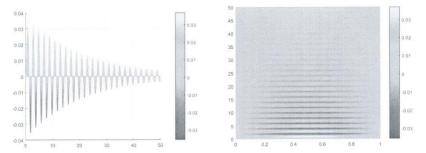


Figure 1 – In these plots, we can see the decay of the solution $u_{\varepsilon}(t,x)$ with respect to the time tof the regularised problem (3), for $\varepsilon = 0.8$ when $t_0 = t_1 = 0.2$. In the first plot, the time t is given by the horizontal axe, and the graphic of $\max_{x \in [0,1]} u_{\varepsilon}(t,x)$ is drawn. Here, we use colours to indicate the value of the solution $u_{\varepsilon}(t,x)$.

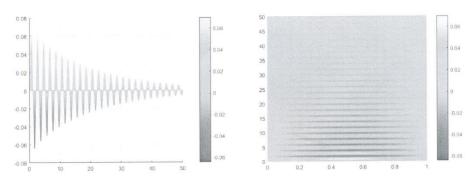


Figure 2 – In these pictures, we see the decay of the solution $u_{\varepsilon}(t, x)$ with respect to the time t of the regularised problem (3), for $\varepsilon = 0.01$ when $t_0 = t_1 = 0.2$.

Now, compare the solution $u_{\varepsilon}(t,x)$ at t=100 of the regularized problem (3), for several values of ε . In Figure 3, there is given a comparison of the solution $u_{\varepsilon}(t,x)$ at time t=100 of the regularized problem (3), for the parameter ε at $\varepsilon=0.8, 0.5, 0.3, 0.1, 0.08, 0.05, 0.03, 0.01.$

Consider the case when t_0 and t_1 are different. Let us start with the case $t_0 < t_1$. Let $t_0 = 0.2$ and $t_1 = 10$ for $\varepsilon = 0.01$. Then for the illustrations we have Figure 4.

Now, we consider the case $t_1 < t_0$. Let $t_0 = 30$ and $t_1 = 0.2$ for $\varepsilon = 0.01$. Then for the illustrations we obtain Figure 5.

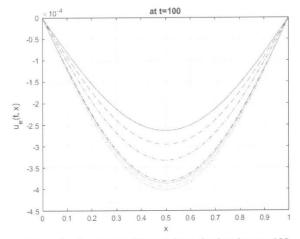


Figure 3 – Comparison of the solution $u_{\varepsilon}(t,x)$ at time t=100 of the regularized problem (3), for the parameter ε . The graphics correspond to $u_{\varepsilon}(t,x)$ at $\varepsilon=0.8,0.5,0.3,0.1,0.08,0.05,0.03,0.01$ from top to bottom, respectively.

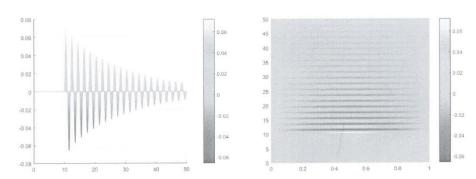


Figure 4 – In these plots, we see the decay of the solution $u_{\varepsilon}(t,x)$ with respect to the time t of the regularised problem (1.3), for $\varepsilon=0.01$ when $t_0=0.2$ and $t_1=10$.

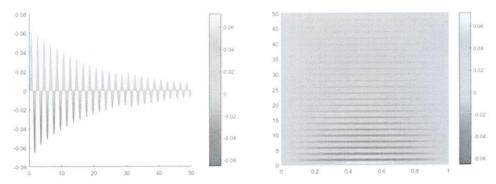


Figure 5 – In the plots, we can see the decay of the solution $u_{\varepsilon}(t,x)$ with respect to the time t of the regularised problem (3), for $\varepsilon = 0.01$ when $t_0 = 30$ and $t_1 = 0.2$.

Conclusion

Numerical experiments show that approximation methods work well in situations where a rigorous mathematical formulation of the problem is difficult in the framework of the classical theory of distributions. The concept of very weak solutions eliminates this difficulty, giving results of correctness for equations with singular coefficients. In the framework of this approach (very weak solutions), the expected

physical properties of the equation can be reconstructed, for example, the distribution profile and the decay of the solutions for large times.

References

1. C. Garetto, M. Ruzhansky. Hyperbolic second order equations with non-regular time dependent coefficients. Archive for Rational Mechanics and Analysis. – Vol. 217 (2015). – No. 1. – P. 113-154.

- 2. J. C. Munoz, M. Ruzhansky, and N. Tokmagambetov. Wave propagation with irregular dissipation and applications to acoustic problems and shallow waters. https://arXiv:1705.01401
- and shallow waters. https://arXiv:1705.01401
 3. M. Ruzhansky, N. Tokmagambetov. Very weak solutions of wave equation for Landau Hamiltonian with irregular electromagnetic field. Letters in Mathematical Physics. Vol. 107. No 4. 2017. P. 591–618.
- 4. M. Ruzhansky, N. Tokmagambetov. Wave Equation for Operators with Discrete Spectrum and Irregular Propagation Speed. Archive for Rational Mechanics and Analysis. Vol. 226. No 3, 2017. P. 1161–1207.
- 5. M. Ruzhansky, N. Tokmagambetov. On very weak solutions to the wave equations for the Hamiltonian in singular electromagnetic field. To appear in Mathematical Notes.

CONTENTS

Sh.R. Myrzakul, E. Gudekli, A.M. Syzdyk, K.R. Yesmakhanova The nonlocal nonlinear Schrödinger and Maxwell – Bloch equation
G.T. Balakayeva, D.K. Darkenbayev, Chris Phillips Investigation of technologies of processing of big data
Abdiakhmetova Z.M., Alimbayeva B.K., Omarova P.T. Use of machine learning for early pre-clinical diagnostics of heart diseases
F.F. Komarov, A.I. Kupchishin, A.A. Kuatbayeva, T.A.Shmygaleva, K.A.Kabi, D.A. Katabas Computer modelling of distributions processes on vacancy nanoclusters depth in the heavy targets irradiated with ions
A. Altybay, M. Ruzhansky, N. Tokmagambetov On numerical simulations of the 1d wave equation with a distributional coefficient and source term
F.F. Komarov, A.I. Kupchishin, A.A. Kuatbayeva, T.A. Shmygaleva, D.A. Katabas, A.Yu. Ryabinin Mathematical modelling of radiation defect formation processes in the materials irradiated with protons and alpha particles33
G.B. Kusşainova, Ye.S. Mukhametkarimov, N.R. Guseinov, O.Yu. Prikhodko Optical properties of a-As2Se3 thin films
A. Issakhov, A. Abylkassymova, M. Sakypbekova Applications of parallel computing technologies for modeling the mixed convection in backward-facing step flows with the vertical buoyancy forces
A.S. Askarova, S.A. Bolegenova, S.A. Bolegenova, V.U. Maximov, A.O. Nugymanova, P. Safarik Combustion processes in furnace chambers of Kazakhstan TPPs using high-ash coal
A.M. Zhukeshov, A.T. Gabdullina, A.U. Amrenova, M. Sagymbaeva, A. Berdalin The study of the heat power effectiveness of a parabolic solar concentrator