ТЕМА 2. АРХИТЕКТУРЫ БАЗ ДАННЫХ

По технологии обработки данных базы данных подразделяются на *централизованные* и *распределенные*. *Централизованная база данных* хранится в памяти одной вычислительной системы. Если эта вычислительная система является компонентом сети ЭВМ, возможен распределенный доступ к такой базе данных – доступ к ней пользователей различных ЭВМ данной сети. Такой способ использования баз данных часто применяют в локальных сетях персональных ЭВМ.

Появление сетей ЭВМ позволило наряду с централизованными распределенные базы данных. Распределенная база создавать И данных состоит из нескольких, возможно, пересекающихся или даже дублирующих частей, хранимых различных ЭВМ друг друга вычислительной сети. Однако пользователь распределенной базы данных не обязан знать, каким образом ее компоненты размещены в узлах сети, и представляет себе эту базу данных как единое целое. Работа с такой базой данных осуществляется с помощью системы управления распределенной базой данных (СУРБД). Данные, содержащиеся в распределенной базе данных, их представление на всех уровнях архитектуры СУРБД и размещение в сети описываются в системном справочнике, который сам может быть декомпозирован и размещен в различных узлах сети.

Части распределенной базы данных, размещенные на отдельных ЭВМ сети, управляются собственными (локальными) СУБД и могут использоваться одновременно как самостоятельные локальные базы данных. Локальные СУБД не обязательно должны быть одинаковыми в разных узлах сети. Объединение неоднородных локальных баз данных в единую распределенную базу данных является сложной научно-технической проблемой. Ее решение потребовало проведения большого комплекса научных исследований и экспериментальных разработок.

По способу доступа к данным базы данных разделяются на базы данных с локальным доступом и базы данных с удаленным (сетевым) доступом.

Системы централизованных баз данных с сетевым доступом предполагают различные архитектуры подобных систем:

- "1. Общая характеристика системы кровообращения" тут тоже много полезного для Вас.
 - файл-сервер;
 - · клиент-сервер.

Файл-сервер. Данная архитектура систем БД предполагает выделение одной из машин сети в качестве центральной (сервер файлов). На такой машине хранится совместно используемая централизованная БД. Все другие машины сети выполняют функции рабочих станций, с помощью которых поддерживается доступ пользовательской системы к централизованной базе данных. Каждый пользователь может запускать приложение, расположенное на сервере, при этом на компьютере пользователя запускается копия приложения. Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где в основном производится обработка. Когда пользователь сети работает с БД, на его компьютере появляется локальная копия общей БД. Эта копия периодически обновляется данными, содержащимися в БД, расположенной на сервере. Архитектура файл-сервер обычно используется в таких сетях, где имеется немного компьютеров. Для ее реализации предназначены персональные СУБД, например Paradox и DBase. При большой интенсивности доступа к одним и тем же данным производительность информационной системы падает.

Клиент-сервер. В этой концепции подразумевается, что помимо хранения централизованной БД сервер базы данных дожжен обеспечивать выполнение основного объема обработки данных. Технология клиент-сервер разделяет приложение на две части: клиентскую и серверную. Клиентская обеспечивает интерактивный интерфейс, сервер обеспечивает управление данными, разделение информации, администрирование и безопасность. Для получения данных приложение-клиент формирует и отсылает запрос удаленному серверу, на котором размещена БД. Запрос формируется на языке SQL, который является стандартом доступа к серверу при использовании реляционных баз данных. После получения запроса удаленный

сервер направляет его SQL-серверу (серверу баз данных). SQL-сервер — это программа, которая управляет удаленной БД и обеспечивает выполнение запроса и выдачу клиенту его результатов — требуемых данных. Вся обработка запроса выполняется на удаленном сервере. Для реализации архитектуры клиент-сервер обычно применяются многопользовательские СУБД, например Qracle, MS SQL Server, InterBase и др. Подобные СУБД называют промышленными, так как они позволяют организовать информационную систему, состоящую из большого числа пользователей.

АРХИТЕКТУРА СИСТЕМЫ БАЗ ДАННЫХ

- 1. Развитие архитектуры СУБД
- 2. Архитектура файлового сервера
- 3. Репликация баз данных
- 4. Системная архитектура «клиент—сервер»
- 5. Интеграция базы данных с глобальной сетью Интернет

1. Развитие архитектуры СУБД

Первоначально СУБД имели централизованную архитектуру.

В ней сама СУБД, базы данных и прикладные программы, которые работали с базами данных, функционировали на центральном компьютере. Все процессы, связанные с обработкой данных, производились на центральном компьютере, что предъявляло жесткие требования к его производительности.

Развитие и распространение компьютерных сетей привело к развитию новых архитектурных принципов в организации баз данных.

В основе широкого распространения локальных сетей компьютеров лежит известная идея разделения ресурсов.

Высокая пропускная способность локальных сетей обеспечивает эффективный доступ из одного узла локальной сети к ресурсам, находящимся в других узлах.

Целесообразно иметь не только доступ к ресурсам удаленного компьютера, но также получать от этого компьютера некоторый сервис, который специфичен для ресурсов данного рода.

Сервис может обеспечиваться программными средствами, которые должны располагаться только на этом компьютере и которые нецелесообразно дублировать в нескольких узлах.

Так приходят к различению рабочих станций и серверов локальной сети.

Рабочая станция предназначена для непосредственной работы пользователя или категории пользователей и обладает ресурсами, соответствующими локальным потребностям данного пользователя. Сервер локальной сети должен обладать ресурсами, соответствующими его функциональному назначению и потребностям сети. Примерами серверов могут служить:

- сервер телекоммуникаций, обеспечивающий услуги по связи данной локальной сети с внешним миром;
- вычислительный сервер, дающий возможность производи-; вычисления, которые невозможно выполнить на рабочих станциях;
- дисковый сервер, обладающий расширенными ресурсам внешней памяти и предоставляющий в использование рабочим станциями и, возможно, другим серверам;
- файловый сервер, поддерживающий общее хранилище файлов для всех рабочих станций;
- сервер баз данных фактически обычная СУБД, принимающая запросы по локальной сети и возвращающая результаты.

Сервер локальной сети предоставляет ресурсы (услуги) рабочим станциям и/или другим серверам.

Принято называть клиентом локальной сети компьютер, запрашивающий услуги у некоторого сервера, и сервером — компонент локальной сети, оказывающий услуги некоторым клиентам.

2. Архитектура файлового сервера

Архитектура файлового сервера служит основой для расширения возможностей СУБД централизованной архитектуры в направлении поддержки многопользовательского режима.

В таких системах СУБД может располагаться и работать на нескольких персональных компьютерах, а базы данных располагаются в разделяемых файлах, которые находятся на файловом сервере.

Пользователь, работающий на персональном компьютере, имеет возможность через СУБД обратиться к базе данных на файловом сервере.

В ответ на запрос СУБД файловый сервер направляет по сети требуемый блок данных.

К недостаткам такой архитектуры относятся высокий сетевой трафик (по сети передаются целые файлы базы данных), низкий уровень безопасности доступа к данным.

В Microsoft Access имеется два основных варианта совместного использования баз данных по технологии файлового сервера:

1. Совместное использование целой базы данных Access

Особенно широкое распространение получили сети, поддерживающие концепцию файлового сервера.

База данных Access в такой сети может размещаться на компьютере, выделенном в качестве файлового сервера. При этом СУБД Access может быть установлена или на файловом сервере или на каждой рабочей станции. Обработка данных базы в обоих случаях осуществляется на рабочих станциях пользователей.

При использовании в ЛВС средств Access работа БД в сети для пользователей практически не зависит от ее конфигурации и способа размещения в ней СУБД Access.

При этом пользователи работают с одними и теми же данными, используя одни и те же формы, отчеты, запросы, макросы и модули. Это удобно, когда все пользователи должны использовать базу данных одинаково.

Концепция файлового сервера в локальной сети обеспечивает рядом сетевых операционных систем.

Наиболее популярной ft Windows NT и NotWork Novell

является Microsoft Windows NT и NetWare Novell.

Windows NT имеет версию Windows NT Server, предназначенную для другими серверами управления файлов И версию Windows NT Workstation, которая устанавливается на рабочей станции. Windows NT Workstation является полностью 32-разрядной управлением операционной системой, под которой выполняться различные приложения, том числе и Microsoft Access. Отметим, что Windows NT Workstation может работать не только на процессорах Intel, но и на ряде RISC-процессоров.

2. Совместное использование только таблиц базы данных Access

Можно поместить на сетевой сервер только таблицы и хранить остальные объекты базы данных на компьютерах пользователей. В этом случае работа с базой данных Access происходит быстрее, так как по сети передаются только данные. Пользователи могут изменять формы, отчеты и другие объекты в соответствии со СВОИМИ конкретными требованиями, не влияя при этом на работу других пользователей.

Для отделения таблиц от других объектов базы данных применяется Мастер разделения баз данных.

3. Репликация баз данных

Для пользователей, которые совместно работают с одним приложением, но не всегда имеют возможность подключиться к ЛВС Access предлагает использование репликации базы данных.

Репликацией называется создание специальных копий — репликаций общей базы данных Access, с которыми пользователи могут одновременно работать на разных компьютерах.

Например, при работе командировке или дома, когда невозможно подключиться к сети или когда необходимо уменьшить загрузку сети.

Отличие от обычной копии файлов баз данных заключается в том, что для репликаций базы данных возможна синхронизация изменений.

Преобразование БД в реплицированную базу данных выполняется командой меню Сервис Репликация Создать дополнительную реплику.

При этом Access присваивает базе данных статус основной реплики и создает одну новую реплику.

После внесения изменений в реплики возможна их синхронизация, которая выполняется с помощью команды Синхронизация.

При проведении сеанса синхронизации изменения, сделанные одним пользователем, могут автоматически вноситься в общую реплику и реплики других пользователей и наоборот.

В процессе синхронизации производится обмен обновленными записями и объектами между репликами.

Если пользователи двух разных реплик по-разному изменили одну и ту же запись, то при синхронизации реплик создается конфликтная таблица. Для того чтобы просмотреть и исправить конфликтующие записи, следует выполнить команду

Устранить конфликты.

Отметим, что в БД реплицироваться могут не все объекты. Часть объектов может использоваться локально. Некоторые объекты реплицируются группами пользователей. При проведении сеанса синхронизации работа с базой данных может продолжаться. Для создания реплик базы данных можно использовать также «Портфель» Windows.