ARPN Journal of Engineering and Applied Sciences ©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

remains at a certain value, without returning to the original value, and for these conditions (Figure-2a, curve 4), the

VOL. 16, NO. 18, SEPTEMBER 2021

violation of the stoichiometry of the reaction (1) is observed.

Table-3. Oxidation of sodium sulfite by oxygen in the presence of a microspherical catalyst at T=40°C.

No of a test	Ash, g	Concentration, mol/l			Na ₂ SO ₃ conversion	Wo2, max,
		Na ₂ SO ₃	FeSO ₄	H ₂ SO ₄	degree, %	ml/min
1	0	0.4	-	-	100.0	0.6
2	0.1	0.4	-	-	100.0	5.4
3	0.5	0.4	-	-	100,0	4.4
4	1.0	0.4	-	-	100.0	4.0
5	2.0	0.4	-	-	-	3.4
6	0.1	0.2	-	-	100.0	4.8
7	0.1	0.1	-	-	100.0	3.6
8	0.1	0.2	1.10-4	-	100.0	4.0
9	0.1	0.2	0.5.10-5	-	100.0	4.6
10	0.1	0.2	1.10-5	-	100.0	6.8
11	0.1	0.2	1.10-2	-	79.0	3.8
12	0.1	0.2	-	-	100.0	4.8
13	0.1	0.2	-	1.75.10-2	100.0	5.2
14	0.1	0.2	-	5.2.10-2	100.0	3.8
15	0.1	0.2	-	8.75.10-2	100.0	3.0

The conversion curves obtained by varying in the range from 0.11 to 0.4 mol/L are presented in the Figure-2c. The correlation $C_{Na2SO3}/Q_{O2}=2$ and the correspondence of the stoichiometry of the reaction (1) are preserved throughout the studied interval. The dependence (Figure 2d) of the oxygen absorption rate (Q_{O2} at $Q_{O2} = 1/2$ from ΣQ_{O2}) is described by the equation (2):

 $W_{O2} = (k_1 \cdot \beta_1 \cdot C_{Na2SO3})/(1 + \beta_1 \cdot C_{Na2SO3})$

(2)

where β is the constant of Na₂SO₃ adsorption on the surface of aluminosilicate microspheres. The data of the Table-3 also indicate on the Na₂SO₃ sorption.

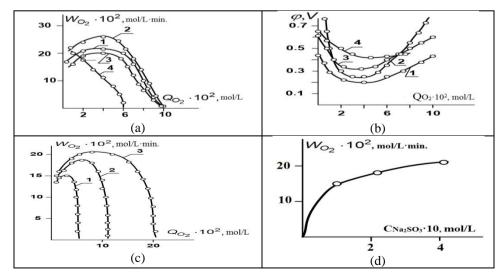


 Figure-2. Oxidation of sodium sulfite by oxygen in the pre sence of microspherical aluminosilicates at T=40°C, P_{O2} = 0.1 MPa; a, b: C_{Na2SO3} = 0.2 mol/l, C_{H2SO4} =10² mol/l: 1 - 1.75; 2 - 3.50; 3 - 5.25; 4 - 7,0; c, d: C_{Na2SO3} : 1 - 0.1; 2 - 0.2; 3 - 0.4 mol/L.