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APPLICATION OF GBT THEOREM FOR GRAVITATIONAL DEFLECTION OF LIGHT BY COMPACT OBJECTS

One of the most renowned classical experiments that verifies the curved nature of space-time geometry
is the bending of light. This phenomenon is extensively discussed in most textbooks on general relativity, with
a clear and comprehensive explanation provided.

In this study, we employ the material medium approach to determine the refractive index associated
with the gravitational field of a compact object with a quadrupole moment. Our research presents a method
for calculating the gravitational deflection angle for compact objects by utilizing the refractive index and the
GBT theorem for an isotropic metric. This method is particularly important because it allows for the calculation
of the deflection angle for both light and relativistic particles. The material medium approach enables us to
consider the compact object's gravitational field as a medium with a refractive index. By applying this
approach, we establish a relationship between the refractive index and the quadrupole moment of the
compact object. We then utilize this relationship to calculate the deflection angle of light and relativistic
particles.

Key words: GBT theorem, deflection of light, Compact Objects.
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blKlwam 0bbeKTINEPMEH KapPbIKTbIH, TPaBUTALMANBIK aybITKYbI YILiH
laycc-boHHe TeopemacbiH KonaaHy

KeHicTiK-yaKblT reOMeTPUACBIHbIH, KMCbIK CMMATblH PAcTalTbliH €H SWriNi KnaccuKanblk TaxKipnbenepain
Bipi — KaPbIKTbIH, KMCbIKTbIFbl. MKapbIKTbIH, aybITKYbIHbIH, 9A4eTTeri TyCiHAipMeci KapanaibiM. MaccKBTiK HbicaH
bonfaH Kesae, KapblK Cayfeci aAeTTe acep eTy napameTpi Aen atanaTbiH H6enrini 6ip aMmaKTarbl XKyMeHiH,
*abblK MaccacbiHa Typa nNporopuyoHan oOypbiuneH uinedi. CTaTWKanblk Cchepanbik CUMMETPUAbI
rpaBMTaUMANbIK epic BonfaH Ke3ae KapblKTbiH, aybITKybIHbIH, bipereit nepcnekTMBACbIH YCbIHATbIH *aHa
Keskapac 6ap. byn agic Kapblk CcaynenepiHiH, TPaeKTOPMACBIHbIH, TOMOAOTMACBIHbIH, MaHbI3AblAbIFbIH
KepceTeni. byn aaic aybITKy BypbIlWbIH ecenTey ywWiH Maycc-BoHHe TeopeMacbiH KOAAAHYAbl NaaanaHaapl.

Byn *KyMbICTa TOPTNOAOCTI MOMEHTI Bap bIKLIAM HbICAHHbIH, FPaBUTALMANBIK epiciMeH BainaHbICTbl CbiHY
KOPCETKILWIiH aHbIKTay YLWiH MaTepuanaplk opTa TaCiNiH KongaHambl3. Bi3aiH 3epTTeyimis CbiHY KepCeTKilliH
YKOHE M30TPONTbl METPUKA YLWIiH aycc-boHHe TeopemacblH NaitZanaHa OTbipbIM, *KMHAKbl 0ObEKTINep YLWiH
rpaBMTaLMANBIK aybITKY OypbIlWbIH eCenTey 9AiCiH yCbiHaAbl. byn aaic acipece MaHbI3abl, cebebi 0N KeHjn KaHe
PENATUBMUCTIK BeNleKTep YLWiH aybITKy OYpPbILIbIH ecenTeyre MyMKiHAIK Bepeai. MaTepuanipblk opTa Tacini
bIKLIAM HbICaHHbIH rPaBUTALIMANIK ©PICIH CbIHY KOPCEeTKIWi Bap opTa peTiHAe KapacTbipyFa MyMKIHAIK Bepeai.
Byn Tacinai nanpanaHa oTbipbin, 0i3 bIKWAM HbICAHHbIH, CbiHY KOPCETKilli MeH TepTNoAtOCTi MOMEHTI
apacbiHAafbl BainaHbiCTbl OpHaTambis. CofaaH KeliH 6i3 6yn  KaTblHACTbl KapblK MNeH PeaaTUBUCTIK
HenwekTepaiH aybITKy BYpPbIWbIH ecenTey YLWiH NaikaanaHambi3.
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Application of GBT theorem for gravitational deflection of light by compact objects
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MNprumeHeHne Teopembl laycca-boHHe AnA rpaBUTALMOHHOMO OTKAOHEHWA ceBeTa
KOMNaKTHbIMM 06beKTamm

OHWM 13 CamMbliX M3BECTHbIX KNaCCUYECKUX IKCMEPUMEHTOB, NOATBEPHKAAIOLWMX UCKPUBAEHHYIO NpUpoay
reoMeTpuM NPOCTPaHCTBa — BPEeMeHW, ABNAETCA UCKpueaeHue cBeTa. ObblyHOEe 06bACHEHUE OTKAOHEHUS
cBeTa npocrtoe. Korga NpMcyTCTBYET MACCUBHbLIM OBbBEKT, CBETOBOM Ny4 M3rnbaeTca nog yri1om, KOTOPbIi
NPAMO MNPOMNOPLMOHANEH 3aMKHYTOM Macce cCUCTeMbl B onpeaeneHHon obnacTv, 06blMHO Ha3biBaemMow
npuuenbHbiM napameTpom. CyLLecTByeT HOBbIM NOAX04, Npeanaratowmin YHUKaNbHbINA B3r1A4 Ha OTKIOHEHWE
cBETa B MPUCYTCTBMM CTAaTUYECKOTO CHEPUYECKU-CUMMETPUYHOIO rpaBUTaLMOHHOrO nona. 3TOT MeTos,
NoAYEPKMBAET 3Ha4YeHMe TONOIOTMM TPAEKTOPMM CBETOBbIX JydYei. 1A pacyeTa yria OTKIOHEHUA 3TOT MeTo,
MCNO/b3yeT NPUMEHeHne Teopembl Maycca-boHHe.

B naHHOM paboTe Mbl UCMOMb3yeM MOOXOL, MaTepuasibHOW cpeabl ANA OnpeaeneHus rnokasaTens
NPEeNOMIEHNA, CBA3AHHOIO C rPaBUTaLLMOHHbLIM MOJIEM KOMMAKTHOrO 06beKTa C KBaApynoibHbIM MOMEHTOM.
B Hallem MccnenoBaHMM NpeacTaBAeH MeTo, pacyeTta yria rpaBUTaLMOHHOrO OTKJOHEHMS A18 KOMMaKTHbIX
0OBEKTOB C UCMO/Ib30BaHMEM MOKa3aTe s NPEOMAEHMSA U TeopeMmbl [aycca-boHHe a1 M30TPONHOM METPUKM.
3TOT MeTo, 0COBEHHO BaXKeH, MOCKO/bKY MO3BOJIAET BbIYUCANTL YION OTKAOHEHUS KaK A/19 IETKMUX, TaK 1 418
PEeNATUBUCTCKMX YacTul,. Moaxon matepuasnbHON cpefbl NO3BOAET PacCMaTpUBaTh MPaBUTALMOHHOE nose
KOMMaKTHOro 0bbeKTa Kak cpey C nokasaTesem npenomaeHns. NpumeHas 3TOT Noaxo4, Mbl yCTaHaBIMBaemM
CBA3b MEK/y MoKasaTeNem NpeaoMIeHMUA U KBadpynoNbHbIM MOMEHTOM KOMMAKTHOrO 0bbeKTa. 3aTem Mbl

MCNONb3yeM 3TO COOTHOLLIEHWE ANA pacyeTa yria OTKAOHEHMA CBETA U PENATUBUCTCKUX YacTuL.
Kntouesble cnoBa: Teopema GBT, oTKAOHEHME cBeTa, KOMMNaKTHble 06BbEKThI.

Introduction

The General Theory of Relativity establishes a
beautiful mathematical connection between the
geometry of space-time and the behavior of matter,
which is described by the energy-momentum tensor.
This theory has been extensively tested in the past and
has provided explanations for various astrophysical
phenomena. The experimental results have
consistently supported the theoretical predictions,
indicating a remarkable agreement.

One of the most renowned classical experiments
that verifies the curved nature of space-time geometry
is the bending of light. This phenomenon is
extensively discussed in most textbooks on general
relativity, with a clear and comprehensive
explanation provided. The conventional explanation
for the deflection of light is straightforward. When a
massive object is present, the light ray is bent by an
angle that is directly proportional to the enclosed
mass of the system within a specific area, commonly
referred to as the impact parameter [1]. Gibbons and
Werner identified a novel approach that offers a
unique perspective on the deflection of light in the
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presence of a static, spherically symmetric
gravitational field. This method underscores the
significance of topology on the trajectory of light rays
[1,2]. To calculate the deflection angle, this technique
employs the application of the Gauss-Bonnet theorem
(GBT).

There are several solutions of Einstein field
equations that can be used to describe the exterior
gravitational field of a static mass distribution with
guadrupole moment [3]. In the limiting case of
vanishing quadrupole, they reduce to the space time
of a Schwarzschild black hole. A common feature of
these metrics is that in all of them, the hypersurface
r=2m is singular.

Thus, further we apply the Gauss-Bonnet
theorem for slightly deformed compact objects and
show that in this case we get the same result as in the
standard approach.

Methods. The metric of slightly deformed
compact object

There are several solutions of Einstein field
equations that can be used to describe the exterior
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gravitational field of a static mass distribution with
guadrupole moment [3]. In the limiting case of
vanishing quadrupole, they reduce to the space time
of a Schwarzschild black hole. A common feature of
these metrics is that in all of them, the hypersurface r

gm(r —2m)

= 2m is singular. Recently, in [4], a different
approximate generalization of the Schwarzschild
metric with a quadrupole was derived, which can be
written as

dr?

ds? = (1 - ZTm) (1 - rq_mm) dt? — [1 +

where m is the mass and q is the quadrupole
parameter. The most interesting feature of this
approximate solution is that its Kretschmann scalar

K—48m2(1+qr_4m)+0( 2) 2
~ s r—m ) @

shows that the hypersurface r = 2m is regular.
Instead, there exists a curvature singularityat r = m

r=R|1-—

(r — 2m)? 1_2_m
r

~(1+ m

) r2(d6? + sin? 6 dp?)(1)

aside from the central singularity located atr = 0,
which is also present in the Schwarzschild spacetime.

To further analyze the physical meaning of the
solution (1), we calculate the corresponding
Newtonian limit. To this end, we perform a
coordinate transformation of the form (r,6) —
(R, V) defined by the equations [4-6]

aqm

R[1+2 in2 9) + 7 in2 9 2
+§(ﬂ1+51n )+F(ﬁ2+sm )+..|sin

and
2

m m
0 =19—qﬁ (1+ZE+..)sinz9c0519, 4)

ds? = (14 20)dt? —

with

GM GQ
D= —T + FPZ(COSﬁ)' (6)

2GM
UR9) =1~

P,(cos9), @)
where P,(cos 8) is the Legendre polynomial of
degree 2, and we have chosen the free constants as
a, = 2,5, = 1/3,and B, = 5/3.

We recognize the metric (5) as the Newtonian
limit of general relativity, where ® represents the
Newtonian potential. Moreover, the constants

2
M=Q1+q@mQ=zqm’ (8)

can be interpreted as the Newtonian mass and
guadrupole moment of the corresponding mass
distribution.

1+ 29

: (3)

where the §; and B, are constants and we have
neglected terms of the order higher that m3/R3.
Inserting the above coordinates into the metric (1), we
obtain the approximate line element

— U(R,9)R?(d9? + sin?9d¢p?), (5)

Representation of metric in the isotropic
coordinates and calculation of refractive index

Writing the metric tensor in isotropic
coordinates is a convenient and practical approach for
calculating the refractive index in curved spacetime,
as it simplifies the mathematical -calculations
involved and makes the problem more tractable. For
the calculation of the corresponding refractive index,
we now represent the above approximate metric in
isotropic coordinates (t, p, 8, ¢). To this end, let us
consider the coordinate transformation

r=p (1 + %)2 + qh(p), )

where the additional auxiliary function h(p) stays for
the deformation from spherical symmetry. By
introducing this transformation into the line element
in Equation (1) and expanding up to the first order in
g, the corresponding function h (p) turns out to be

h m? (m” — 4p*) 10
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Finally, we can rewrite the line element in the form

ds? = A(p)dt? — B(p)dp? (11)

where we have introduced the notation
dp? = dp? + p?dB? + p?sin? 6 d?, (12)

and the functions A(p) and B(p) are

p)‘* [1

]. (14)

In the limiting case g = 0, the above metric
reduces to the Schwarzschild metric in the isotropic
form [7]. To derive the expression for the refractive
index, we follow the procedure proposed by Sen in
[7] for static fields. We consider the trajectory of a
light ray such that ds? = 0. Then, the velocity of the
light ray v(p) can be determined from the expression

_ (m—2p)? 4mp
Alp) = (m + 2p)? [1 T 4p2]' (13)
. 16(m — 2p)? (1 +ﬂ)p4
20y _aP" _Alp) _ 4p?
(m+ 2p) (1+m+p)
Using n(p) = c/v(p) the last equation yields the effective refractive index for light in the gravitational field

1

(m? — 2mp — 6p*)m
q+0(q?).

_|__

n(p) =

*(m — 2p)?

(16)

1
4 |P2(m = 2p)? + P
(m + 2p)°

In this way the optical metric reads

(17)

We will use this expression further at calculation
deflection angle.

Furthermore, the velocity of the light ray in
terms of the radial coordinate r can be obtained as
follows:

2 =n(p)?dp?® + p*n*(p)de>.

v(r) = v(p) (Z—;) (18)

where the expression dr/dp can be determined from
Equations (9) and (10) as follows:

dr m?  qm?(16m?p? —m*)
dp 4p? 4 p%2(m? + 4p?)?°

(19)

Using the inverse transformation, the new coordinate
p can be written as

qm?

4(r—m)’

Finally, the refractive index is related to the velocity
by

p= %(Zr —3m) + (20)

n(r) = (21)

1
v(r)’
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(m + 2p)°

(m? — 4p?)(m + p)

Then, from Equations (18), (19), and (21), we obtain

qm2r —3m)
+§—(r —mZ | (22)

r
n(r) = —

2m

this is the effective refractive index of the spacetime
described by the approximate quadrupolar metric in
Equation (1). As expected, in the limiting case g =
0, it reduces to refractive index of the Schwarzschild
spacetime [7], where ny = r/(r — 2m) . The
second term is due to the slight deformation of the
central gravitating body from the spherical symmetry.
The behavior of the refractive index is illustrated in
Figure 1. Notice that the divergences located at r =
m and r = 2m are due to the presence of the
curvature singularity of the metric in Equation (1) and
the Schwarzschild horizon, respectively.

In particular, in the weak field approximation,
the refractive index can be expressed by the infinite
converging series

2m m
n(r)weak ~1+ 7 +q ? + (23)

In the case of vanishing quadrupole parameter,
the above expression yields the refractive index

derived by different authors for the weak field limit
of the Schwarzschild metric [8-10].
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Figure 1. Refractive index as a function of r for different values of g and m = 1. In the interval r €
(1, 2), the refractive index can become negative, depending on the value of q.

The GBT theorem and deflection of light
First, let's express the optical metric (17) using a

At this moment, the optical metric indicates .

set of new coordinates, which includes the dt? = §,,dx%dx? = dr*? + F2(r*)de?. (26)
introduction below
r* =n(p)dp, (24) The expression for the Gaussian optical
and curvature k is given in coordinates as
f@*) =n(p)p. (25)
1 d?f(r* d d dp d?
_ f(z)_ P p)+ pafl @7
f(r*) dr* dr* dp\dr*) " dr* dp?
Furthermore, we can express the last equation in T®
terms of the refraction index resulting with =— f f K/gdr de. (30)
0

_n()n"(p)p = (' () p + n(p)n’ (p)
n*(p)p

.(28)

Using the expression (28) and refractive index
we obtain Gaussian optical curvature in weak field as

above
2 q 2 52
Kz(r—3+r—3)M+0(M,q ). (29)
A GBT theorem allows computation the
deflection angle by solving the integral bellow, a

more detailed description can be found in work[1],
and it is

Ty

Substituting (29) into (30) we get

(@

sing

)J_dr dp, (31)

where we have used the light ray equation

b
sing’

T (32)

Note that we have also used
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ds = \[gdr*de = n*(p)pdpde ~ rdrd. (33)
Solving the last integral, we find the total deflection
angle
_4M  2q 4AM q
9_b+b_b(1+2). (34)

We also note that the same result we obtained by
using standard approach of computing deflection
angle due to solving integral

— TT.

(35)

which has been solved by corresponding linearized
expression for the deflection angle [8,11-15].

Conclusion

To summarize, this study applied the material
medium approach to investigate the bending of light
in the gravitational field of a mass distribution with a
guadrupole. The approach treated the bending of light
as a refraction effect and offered several advantages
in analyzing the phenomenon. The study proposed a
novel method for calculating the gravitational
deflection angle for compact objects based on the
refractive index and the geometric-optics
approximation in an isotropic metric.

We have applied a new approach to calculating
the gravitational deflection angle for compact objects
based on the refractive index and GBT for an
isotropic type of metric. The proposed method can
determine the deflection angle of both light and
relativistic particles, which is of significant
importance in astrophysics and cosmology. The study
provides a new perspective on gravitational lensing
and can contribute to a better understanding of the
effects of gravity on light and particles.

Future research could extend this approach to
more complex and realistic astrophysical scenarios,
such as studying the gravitational lensing effect of
dark matter or incorporating the effects of black holes'
spin. Additionally, the proposed method could be
applied to analyze the data from ongoing and future
observational campaigns, such as the Event Horizon
Telescope or the upcoming Euclid mission. The
material medium approach and the GBT method for
calculating gravitational deflection angles can offer
valuable insights into the fundamental properties of
gravity and its effects on light and particles. These
findings could have far-reaching implications for our
understanding of the universe's structure and
evolution.
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