Казахский национальный университет им. аль-Фараби Силлабус

(KTKZh 7203) «Конвективный тепломассоперенос в капельных жидкостях»

Код дисци- плины	Название дисциплины	Тип	Кол-н делю	во часов	в не-	Кол-во кредитов	ECTS	
			Лек	Практ	Лаб			
KTKZh 7203	Конвективный тепло-	ЭК	2	1	0	3	5	
	массоперенос в капель-							
	ных жидкостях							
Лектор	Аскарова А.С. д.фм.н., пр	офесс	op	Офис-	Офис-часы		По расписанию	
e-mail	Aliya.Askarova@kaznu.kz							
Телефоны	87017106385			Аудит	Аудитория		317	
Академическая	В академической програ	мме сі	тециалі	ьности ку	урс явл	іяется элект	чвным,	
презентация	формирующим индивидуа	льную	траект	орию обуч	чения.			
курса	Цель и задачи дисциплины	и задачи дисциплины: Обобщены результаты теоретического исслед				сследо-		
	вания процессов тепломас	сопере	носа в	неизотер	мическі	их течениях	жидко-	
	стей (капельные, неньюто	новски	е, пров	одящие)	с перем	енными коэ	ффици-	
	ентами переноса. Приведе	енные ј	результ	аты пред	ставлян	от интерес д	іля тео-	
	ретической гидромехании					-		
	стильной, фармацевтичеся	кой пре	омышл	енности,	для раз	личных вен	гиляци-	
	онных устройств, для неко	оторых	технич	неских пр	иложен	ий (течение	жидко-	
	стей в трубах и каналах, в различных технологических аппаратах и устрой-							

ствах), для анализа устойчивости движения, вискозиметрии.

Цель преподавания с/к "**Конвективный тепломассоперенос в капельных жидкостях**" ознакомить докторантов PhD 1 курса, численному моделированию процессов распада, дисперсии, испарения и горения капель жидкого топлива при высокой турбулентности.

Задачи изучения дисциплины.

В результате изучения дисциплины студент должен:

- знать основные уравнения, описывающие процесс горения жидких топлив при высокой турбулентности;
- уметь применять основные уравнения и методы расчета к исследованию турбулентности при расчете горения жидких топлив в камерах сгорания.
- приобрести практические навыки, необходимые для расчета различных течений, происходящих при физико-химических превращениях.

Преквизиты.

Для изучения курса «Статистическая модель турбулентности при расчете горения жидких топлив в камерах сгорания» докторант PhD должен знать механику идеальной жидкости, механику вязкой жидкости, методы компьютерного и численного моделирования.

Постреквизиты.

В результате изучения дисциплины докторант PhD должен знать основные уравнения, описывающие тепломассоперенос в турбулентных неизотермических реагирующих течениях; уметь применять основные уравнения и методы расчета к исследованию турбулентных неизотермических реагирующих течений, происходящих в областях реальной геометрии; приобрести практические навыки, необходимые для расчета различных течений, происходящих при физико-химических превращениях.

Знания и умения, полученные докторантами PhD при усвоении дисциплины

	«Статистическая модель турбулентности при расчете горения жидких тог				
	лив в камерах сгорания», являются базой для изучения последующих спец-				
	курсов, для выполнения лабораторных работ спец.практикума по данной				
	специализации, а также при работе над докторской диссертацией на				
	соискание академической степени доктора философии (PhD) в области фи-				
	зики по специальности «Теплофизика и теоретическая теплотехника».				
Пререквизиты и	Для изучения с/курса «Исследование аэродинамических и теплофизических				
пореквизиты	характеристик тепломассопереноса в камерах сгорания» докторант PhD				
	должен знать механику идеальной жидкости, механику вязкой жидкости,				
	методы компьютерного и численного моделирования.				
Ожидаемые	Применены при построении теории горения жидких топлив и будут способ-				
результаты	ствовать более глубокому пониманию сложных физико-химических явле-				
обучения					
	пользованы при проектировании различных двигателей внутреннего сгора-				
	ния, которые решали бы одновременно проблемы оптимизации процесса				
	горения, увеличения эффективности сжигания топлива и минимизации вы-				
	бросов вредных веществ.				
Литература и	Основная:				
ресурсы	1. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969 847 с.				
	2. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1973 847 с.				
	3. Исатаев С.И., Акылбаев Ж.С., Турмухамбетов А.Ж. Аэродинамика и				
	теплообмен криволинейных тел. – Алматы, Ғылым, 1996. – 437с.				
	4. Аскарова А.С. Конвективный тепломассоперенос в капельных и нели-				
	нейновязких жидкостях. – Алматы, 2000. 123с.				
	5. Аскарова А.С. Конвективный перенос вязкой жидкости. – Алматы,				
	2006 139c.				
	Дополнительная литература				
	1 Полежаев В.И., Бунэ А.В., Верезуб Н.А. и др. Математическое модели-				
	рование конвективного тепломассообмена на основе уравнений Навье-				
	Стокса. – М.: Наука, 1987. – 256 с.				
	2 Оран Э., Борис Дж. Численное моделирование реагирующих потоков				
	М.: Мир, 1990. – 660 с.				
	3 Maas U., Warnatz J. Simulation of chemically reacting flows in two				
	dimensional geometries // Impact Comput. Science Eng. – 1989. – №1. – P. 394–420.				
	4 Аскарова А.С., Болегенова С.А., Лаврищева Е.И., Локтионова И.В. Чис-				
	ленное моделирование топочных процессов при горении высокозольно				
	экибастузского угля // Теплофизика и Аэромеханика. – 2002. – Т.9, №4. –				

5 Устименко Б.П., Джакупов К.Б., Кроль В.О. Численное моделирование аэродинамики и горения в топочных и технологических устройствах. – Ал-

6 Современные алгоритмы при исследовании многомерных задач матема-

7 Пашков Л.Т. Математические модели процессов в паровых котлах. -

8 Mыller H. Numerische Berechnung dreidimensionaler turbulenter Strumungen in Dampferzeugern mit Wдrmeыbergang und chemischen Reactionen am Beispiel des SNCR-Verfahrens und der Kohleverbrennung: Fortschritt-Berichte VDI-

9 Roache P.J. Computational fluid dynamics. - Albuquerque: Hermosa Press,

тической физики. Сб. научных трудов. – М.: Наука, 2003. – 245 с.

C.585-596.

ма-Ата: Наука, 1986. – 224 с.

Verlag. –1992. – Reiche 6, №268. – 158 s.

РХД, 2002. – 208 с.

1985. - 283 p.

- 10 Аскарова А.С., Болегенова С.А., Лаврищева Е.И., Локтионова И.В. Численное моделирование перераспределения воздушно-топливных потоков в камерах сгорания // Доклады Национальной Академии Наук РК. Сер.физико —математическая 2003. №3. С.13-18.
- 11 Askarova A.S., Bolegenova S.A., Lavrichsheva E.I., Loktionova I.V. The modeling of chemical technological process in the fire chambers // Eurasian Chemical Technological Journal. 2002. №4. C.131-139
- 12 Аскарова А.С., Болегенова С.А., Лаврищева Е.И., Локтионова И.В. Моделирование топочных процессов с целью их оптимизации и уменьшения пылегазовых выбросов // Новости науки Казахстана. 2004. №2 (81). С.34—39.
- 13 Левицкий А.А. Математическое моделирование плазмохимических процессов. М.: Плазмохимия, 1990. С.180–226.
- 14 Askarova A.S., Lavrishcheva Y., Ryspaeva M. Numerical modeling of nitric oxides formation at various excess air coefficients in the furnace chamber // Works of the 17th International Congress of Chemical and Process Engineering CHISA. Praha, 2006. 0001. F5.5.

электронных учебников.

- 1. М.Ю.Белевич «Гидромеханика. Основы классической теории http://pages.rshu.ru/hydra/hydra.html
- 2. Fluid Mechanics

http://scienceworld.wolfram.com/physics/topics/FluidMechanics.html

- 3. Engineering Fundamentals in combustion, fluid mechanics, thermodynamics e.t.c. http://www.efunda.com/home.cfm
- 4. Концепции развития горения и взрыва как области научно-технического прогресса. http://www.ism.ac.ru/sgv/conc.html
- 5. Механика сплошных сред. Лекции. В.А.Алешкевич, Л.Г.Деденко,
- B.A.KapaBaeB http://phys.web.ru/db/msg/1164708/
- 6. Гидродинамика http://about-hydrodynamics.com/
- 7. Гидродинамика. Теория и практика http://gidrodinamika.net
- 8. Гидродинамика http://www.nsu.ru/materials/ssl/text/encyclopedia/fluid-dynamics.html
- 9. Aerodynamics for student http://www.ae.su.oz.au/aero
- 10. Белоцерковский Турбулентность и вихревая аэродинамика http://www.elibrary.ru/books/janus/belots.htm
- 11. Аскарова А.С. Конвективный тепломассоперенос в капельных и нелинейно-вязких жилкостях http://www.kazsu.kz

	неино-вызких жидкостых пир.// www.kazsu.kz			
Политика оце-	Описание самостоятельной работы	Bec	Результаты обу-	
нивания и атте-			чения	
стации	Домашние задания и семинары	48%	1-11	
	СРМ, СРМП	30%	1-5, 9-11	
	Контрольная работа	22%	6-8	
	ИТОГО	100%	1-11	
	Ваша итоговая оценка будет рассчитываться по формуле Ниже приведены минимальные оценки в процентах: Итоговая оценка по дисциплине = (PK1+MT+PK2)*0,6+(ИK+0,4) 95% - 100%: A 90% - 94%: A- 85% - 89%: B+ 80% - 84%: B 75% - 79%: B- 70% - 74%: C+ 65% - 69%: C 60% - 64%: C-55% - 59%: D+ 50% - 54%: D- %			
	-49%: F			
Политика	Соответствующие сроки домашних заданий ил	и проек	гов могут быть про-	
дисциплины	длены в случае смягчающих обстоятельств (таких, как болезнь, экстренные			

случаи, авария, непредвиденные обстоятельства и т.д.) согласно Академической политике университета. Участие студента в дискуссиях и упражнениях на занятиях будут учтены в его общей оценке за дисциплину. Конструктивные вопросы, диалог, и обратная связь на предмет вопроса дисциплины приветствуются и поощряются во время занятий, и преподаватель при выводе итоговой оценки будет принимать во внимание участие каждого студента на занятии.

	График дисциплин		
Неделя	Название темы	Количе- ство ча- сов	Макс. балл
1.	Лекций. Аналитическое решение задач конвективного тепломассопереноса		
	Семинар. Ламинарные неизотермические течения жидкостей с переменными коэффициентами переноса		
2.	Лекция. Основные уравнения конвективного тепломассопереноса		
	Семинар. Свободные течения. Автомодельные решения		
3.	Лекция. Тепломассопереноса в пограничном слое		
	Семинар. Метод малых возмущений		
4.	Лекция. Автомодельные уравнения		
	Семинар. Метод итераций		
5.	Лекция. Основные особенности тепломассопереноса в капельных жидкостях		
	Семинар. Задача Блазиуса		
6.	Лекция. Основные уравнения и описание метода решения		
	Семинар. Задача Сакиадиса		
7.	Лекция. Тепломассоперенос в неизотермическом пограничном слое на пластине		
	Семинар. Пограничной слой на пластине		
8	Лекция. Течение в пограничном слое на непрерывно движущейся плоской поверхности		
	Семинар. Формулировка задачи и ее решение		
	Контрольная работа -11 баллов. Рубежный контроль №1. –	100 баллов	•
0	Midterm exam – 100 баллов.	ı ı	
9	Лекция. Тепломассоперенос при естественной конвекции капельной жидкости у вертикальной поверхности		
	Семинар. Влияние термодиффузии		
10	Лекция. Тепломассоперенос в жидкостной струе со свободной поверхностью		
	Семинар. Обтекание пористой пластины		
11	Лекция. Струя капельной жидкости со свободной поверхностью		
	Семинар. Пористая пластина		

12	Лекция. Струя нелинейновязкой проводящей жидкости со свободной поверхностью в поперечном магнитном поле		
	Семинар. Термодиффузия		
13	Лекция. Массообмен в струе дилатантной жидкости со свободной поверхностью		
	Семинар. Метод Слезкина-Тарга		
14	Лекция. Тепломассоперенос у поверхности вращающегося диска		
	Семинар. Течения вблизи твердых поверхностей		
15	Контрольная работа — 11 баллов. Рубежный контроль №2 -	 - 100 баллоі	<u> </u> B

Декан факультета Давлетов А.Е.

Председатель методбюро Машеева Р.У.

Заведующий кафедрой Болегенова С.А.

Лектор Аскарова А.С.