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ABSTRACT 

 

This thesis is devoted to the numerical approximation and parallel computing of 
the hyperbolic type equations with singular coefficients such tsunami and acoustic wave 
equations, and development of software complex for investigation of wave equation 
with singular coefficients. 

In the first chapter, we present the mathematical models of hyperbolic type 
equations with singular coefficients such as tsunami and acoustic wave equation. Then 
we transform the partial differential equations to finite difference schemes. We compare 
explicit and implicit finite difference schemes, as a result of comparing we choose 
implicit schemes for our further implementation. 

Our numerical realization based on the implicit finite difference scheme and the 
robustness of this scheme is validated on the tsunami wave equations model. And in this 
section we have briefly described the concept of very weak solutions. 

At the end of this chapter we used our model to study the Caspian tsunami and, 
then we carried out numerical modeling and made different predictions relative to the 
tsunami, reaching the shore, depending on the height of the initial wave. 

In the second chapter, we consider parallel numerical implementation hyperbolic 
type equations with singular coefficients. Firstly, we present MPI implementation of 2D 
wave equation with a distributional coefficient then CUDA implementation of 2D 
tsunami wave equation and related computational results. 

After we present a hybrid implementation of acoustic wave problems, then we 
compare the results from the different implementations. 

In a hybrid implementation, the joint use of OpenMP, CUDA and MPI 
technologies to solve one problem, the result of the calculations showed that 
implementation of this gives good results. 

In the third chapter, we describe the software complex which we developed for 
investigation of wave equation with singular coefficients. This software is open-source, 
cross-platform, and written in, one of the modern programming languages Python. This 
software will help researchers who investigate hyperbolic systems with singular 
coefficients. 

Keywords: tsunami wave equation, implicit difference scheme, parallel 

computing, MPI, CUDA, numerical simulation. 
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INTRODUCTION 

 

This thesis is devoted to the development of high-performance parallel algorithms 
and software complex for modeling tsunami and acoustic wave equations with irregular 
coefficients. 

Relevance of the research topic. At present, randomly occurring and rapidly 
changing processes leads to huge environmental and economic problems. Therefore, the 
modeling of such processes is very important. Many such problems are modeled by 
hyperbolic type equations with singular coefficients.  

We are allowing ℎ to be a (positive) distribution, for example, allowing the case ℎ =  1 +  �, involving the �-distribution. Such type of setting appears in applications, 
for example when one is looking at the behaviour of a particle in irregular 
electromagnetic fields: in the case of Landau Hamiltonian on ��, and the corresponding 
wave equation was analysed by the authors in [6]. While from the physical point of view 
(of irregular electromagnetic fields) such situation is natural and one expects the well-
posedness, mathematically the equation is difficult to handle because of the general 
impossibility to multiply distributions (recall the famous Schwartz impossibility result 
from [80]). 

Here if the singular coefficients are delta like function, then there is no classical 
solution. To deal with such problems we use the concept of very weak solutions [5-8]. 

The simulation of physical processes mentioned above on a large scale and for a 
long time requires large computational costs. If the computational algorithm is 
sequential, then the computational costs are even larger. A temporary solution to avoid 
this problem is parallelization. 

Efficiently parallelizing numerical methods and algorithms on a multicore 
processor was born in 2004 due to the fact that the physical limit forced the use of more 
processors on a silicon crystal. 

Many engineering and scientific applications often require the simultaneous 
solution of a large number of equations with variable coefficients. The primary aim of 
this thesis work is to take advantage of the computational power of various modern 
parallel processor architectures to accelerate the computational speed of some 
mathematical problems by giving new algorithms and solutions. 

The purpose of the dissertation work. Development of high-performance 
parallel algorithms and software complex for numerical solutions of hyperbolic type 
equations with  singular coefficients such as tsunami and acoustic wave equation. 

Research objectives realizing the goal of the dissertation work: 
1) To design and analyze finite difference schemes for the 1D and 2D hyperbolic 

type equations, and to elaborate and study the implicit finite difference scheme for our 
equations; 

2) To solve numerically the tsunami and acoustic wave equation in one and two 
dimensions by using the implicit finite difference scheme; 
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3) To parallelize the sequential algorithms using CUDA and MPI technologies; 
4) To develop software complex for the investigation of the wave equation with 

singular coefficients. 
The object of study. High-performance parallel computing, numerical methods, 

parallel programming technologies, hyperbolic type partial differential equations with 
singular coefficients, finite difference schemes, software application design tools. 

The subject of study. Numerical analysis, numerical methods, parallel numerical 
algorithms for solving tridiagonal systems, software development technologies. 

Scientific novelty.  Proof of the existence, uniqueness and consistency of very 
weak solutions of the tsunami equation and justification by numerical modeling. 

Development of a parallel algorithm for the numerical solution of the two-
dimensional wave equation with a singular coefficient using the MPI technology based 
on an implicit difference scheme. 

Development of a parallel algorithm for the numerical solution of the two-
dimensional tsunami equation using the CUDA technology based on an implicit 
difference scheme. 

Development of a parallel hybrid algorithm for the numerical solution of the two-
dimensional acoustics wave equation based on an implicit difference scheme. 

Development of open-source, cross-platform software complex for numerical 
solution and investigation of hyperbolic type equation with singular coefficients. 

The main provision for the defense 

- Proof of the existence, uniqueness and consistency of very weak solutions of 
the tsunami equation and justification by numerical simulations. 

- The developed parallel computational algorithm for the numerical solution of the 
two-dimensional wave equation with singular coefficients. 

- The developed parallel algorithm for the numerical solution of the two-
dimensional tsunami equation using the CUDA technology. 

- The developed parallel hybrid algorithm for the numerical solution of the two-
dimensional acoustics wave equation. 

- The developed software complex for investigation of hyperbolic type equations 
with singular coefficients. 

          The theoretical significance of this work lies on the existence, uniqueness and 
consistency of very weak solutions to the tsunami equation and justified by numerical 
simulations. 
          The practical significance of the work is as follows: 
The developed parallel algorithms for the numerical solution of hyperbolic equations 
with singular coefficients are applied to simulate a tsunami in the Caspian Sea; 
Developed software can be used to study waves in heterogeneous media in various fields 
of science. 
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Volume and structure of work. The thesis consists of an introduction, 3 sections 
and a conclusion, a list of references and an appendix. The total volume of the thesis is 
100 pages, 40 figures, 8 tables. The list of references consists of 79 titles. 

In the introduction, the relevance of the topic of the dissertation work, goals, as 
well as tasks for achieving this goal are discussed. The results obtained so far, their 
scientific novelty and significance are described.  

In the first chapter, we present the mathematical models of hyperbolic type 
equations with singular coefficients such as tsunami and acoustic wave equation. Then 
we transform the partial differential equations to finite difference schemes. We compare 
explicit and implicit finite difference schemes, as a result of comparing we choose 
implicit schemes for our further implementation. 

At the end of this chapter we use our model to study the Caspian tsunami then we 
carried out numerical modeling and make different predictions related to the tsunami, 
reaching the shore, depending on the height of the initial wave. 

In the second chapter, we consider parallel numerical implementation of 
hyperbolic type wave equations. Firstly, we present MPI implementation of 2D wave 
equation with a distributional coefficient then CUDA implementation of 2D tsunami 
wave equation and related computational results. 

At the end of this chapter, we present a hybrid implementation of acoustic wave 
problem then we compare the results of the different implementations. 

In a hybrid implementation, joint use of OpenMP, CUDA and MPI technologies 
to solve one problem, the result of the calculations shows that this implementation gives 
very good results. 

In the third chapter, we describe the software complex for investigation of wave 
equation with singular coefficients. This software is open-source, cross-platform, and 
written in, one of the modern programming languages Python. This software will help 
researchers who investigate hyperbolic type equations with singular coefficients. 

In the conclusion, conclusions of this dissertation work are presented. 
Publication. On the topic of the dissertation, 9 papers have been published, 

including 4 in publications recommended by the Committee for Control in the Sphere of 
Education and Science of the Ministry of Education and Science of the Republic of 
Kazakhstan, 2 works in peer-reviewed journals included in the international citation base 
SCOPUS, 3 works in collections of international conferences. 

1. Altybay A., Ruzhansky M., Tokmagambetov N.  Wave equation with 
distributional propagation speed and mass term: numerical simulations // Appl. 
Math. E-Notes. – 2019. – Vol. 19. – P. 552-562. (Scopus Q3). 

2. Altybay A., Ruzhansky M., Tokmagambetov N. A parallel hybrid implementation 
of the 2D acoustic wave equation // International Journal of Nonlinear Sciences 
and Numerical Simulation. – 2020.  – Vol.  21, Iss. 7-8. – P. 821-827. (Scopus, 
Q2). 
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3. 11 Altybay A., Ruzhansky M., Sebih M. E., Tokmagambetov N. Fractional Klein-
Gordon equation with strongly singular mass term // Chaos, Solitons & Fractals.  
– 2021. –Vol. 143. – P. 110579-110647(Scopus, Q1).  

4. 12 Altybay A., Ruzhansky M., Sebih M. E., Tokmagambetov N. Fractional 
Schr ̈odingerEquations with potentials of higher-order singularities // Reports on 
Mathematical Physics. – 2021. – Vol. 87. №1.  – P. 129-144(Scopus, Q3). 

5. 13 Altybay A., Ruzhansky M., Sebih M. E., Tokmagambetov N.  The heat 
equation with singular potentials // Applied Mathematics and Computation. – 
2021. – Vol. 399.  – P. 126-132(Scopus, Q1). 

6. Altybay A., Tokmagambetov N. On numerical simulations of the 1D wave 
equation with a distributional coefficient and sourse term // International Journal 
of Mathematics and Physics. Al-Farabi Kazakh National University. – 2017.  – 
Vol.  8. №2. – P. 28-33.  

7. Altybay A., Tokmagambetov N. A parallel algorithm for solving the two-
dimensional wave equation with a singular coefficient // KazNTU Bulletin. – 

2019.  – Vol. 1. – P. 404-410. 
8. Altybay A., Tokmagambetov N. MPI parallel implement of a wave equation using 

an implicit finite difference scheme. // KBTU Bulletin. – 2020. №1(52).  – P. 112-
120. 

9. Altybay A., Tokmagambetov N. GPU computing for 2d wave equation based on 
implicit finite difference schemes // Bulletin NIA RK. – 2020. №3(77). – P. 32-
42. 
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1 MATHEMATICAL MODELS AND FINITE DIFFERENCE SCHEMES 

OF TSUNAMI AND ACOUSTIC WAVE EQUATION 

 

1.1  Physical background of Tsunami and acoustic wave equations 

 

 Physical background of tsunami   
“Tsunami” comes from two Japanese words “tsu” (harbor, port) and “nami” 

(wave). A tsunami is a huge wave caused by an earthquake on the seabed or a volcanic 
eruption, displacement of the underwater crust. Tsunamis are often caused by 
underwater earthquakes and are one of the most destructive natural forces in the world. 
Its speed is the same as that of an airplane, destroying coastal continents and settlements. 

An earthquake generates a tsunami if it is of sufficient force and there is violent 
movement of the earth to cause substantial and sudden displacement of a massive 
amount of water. Indeed, a tsunami is not a single wave but a series of waves, also 
known as a wave train. The first wave in a tsunami is not necessarily the most 
destructive. Tsunamis are not tidal waves. 

When a tsunami occurs in the deep sea, its height is about 1 m, and the 
propagation speed is very high, when it reaches the shallow sea, the speed begins to 
grow slowly, the wave height can reach a height of 35 m. Surprisingly, tsunami waves 
can be very long (as much as 60 miles, or 100 kilometers) and be as far as one hour 
apart. They are able to cross entire oceans without great loss of energy. The Indian 
Ocean tsunami traveled as much as 5,000 kilometers to Africa, arriving with sufficient 
force to kill people and destroy property. 

Scientists say that a great earthquake of magnitude 9 struck the Pacific Northwest 
in 1700 and created a tsunami that caused flooding and damage on the Pacific coast of 
Japan. 

If we consider the worst tsunami in recent history the hardest event occurred on 
December 26, 2004, a magnitude 9.1 earthquake struck northern Indonesia, affecting 14 
countries in the Indian Ocean and killing about 230,000 people. July 17, 2006, a 
magnitude 7.7 earthquake struck off the town of Pangandaran and set off a tsunami of 2 
m high which had killed more than 300 people. March 11, 2011, a magnitude 9.0 
earthquake near Tōhoku caused a great tsunami struck and killed more than 18000 
people. 

In the Caspian Sea, earthquakes have been very frequent in recent years, for 
example, 10 earthquakes in 2016, 12 earthquakes in 2017, the last earthquake in 
February 2020. According to historical data, in 957 an earthquake shook the Caspian 
Sea and destroyed 15 settlements in the Iranian region. On May 14, 1970, as a result of 
an earthquake in the Buinak region near the epicenter of Makhachkala, a tsunami 
occurred in the Caspian Sea, as a result of which 20 settlements were flooded and areas 
of Makhachkala were flooded, 31 people died and 45,000 were left homeless. At the 
beginning of 2000, the Russian Institute of Oceanology published a brochure entitled 



10 

 

“Tsunamis in the Caspian Sea”, which predicts a possible tsunami wave height of 3 
meters in the Caspian and Black Seas. Therefore, modeling and forecasting tsunami 
waves on the coast is very important. 

 
Mathematical model of tsunami propagation 

In general, the tsunami waves can be modeled by shallow water equations, 
Boussinesq-type Equations, and Computational Fluid Dynamics. 

The shallow water equations (SWE) are one of the tsunami propagation models. 
When the wavelength is much longer than the depth of water, the equations describe 
tsunami wave propagations. 

The tsunami wave equation is one of the fundamental equations in many 
engineering and physical sciences. So one makes predictions and simulations of the 
practical interest.  In this chapter we consider mathematical models and numerical 
simulations of the Cauchy problem for the tsunami propagation. 

Governing Equation. The fundamental equations of tsunami propagation in the 
shallow water are given by Imamura and et.al [1]. 	
�� + �
�� + ���� = 0, 

�
�� + ��� �
�� � + ��� �
�� � + �� ���� + �����/� �√�� +  � = 0 , 

���� + ��� �
�� � + ��� ���� � + �� ���� + �����/�  √�� +  � = 0,                         (1.1) 

 

Where 
 is water surface elevation, ℎ is the depth of the water, � =  ℎ(#, $)  +  
 is the 
total water depth, � and   are discharge fluxes in the # and $ directions, � is the 
gravitational constant, & is a coefficient of bottom friction. 

The 1D case. As the first step we describe the numerical scheme of the tsunami 
model, for linearized long wave equation without bottom friction in one dimensional 
propagation, given by Eq.(1.2) 	
	' + 	�	# = 0 

                                         
  �
�� + �� ���� = 0.                                         (1.2) 

Equation (1.2) are manifestations of mass and momentum conservation law, 
respectively. Frictional terms have been ignored in our discussion of SWE. 

This system can namely be reduced to one equation for the sea level, 

             
	�)(�,�)��� = ��� �*(', #) �)(�,�)�� � + +(', #).                                     (1.3) 

 
In fact, 90% of the world's tsunamis are caused by underwater earthquakes [2] so 

if we want to allow a moving bottom in the model we can write tsunami model as 
follows[3]: 
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	�)(�,�)��� = ��� �*(', #) �)(�,�)�� � + ��,(�,�)��� + +(', #).                          (1.4) 

The  '-dependence  in  *  gives  a  moving  bottom  to  model,  such  as  an  
under-water  slide  or  earthquake.    The above equation can be written as the following: 

-.��(', #) − 	�0*(', #)	�.(', #)1 + 	��*(', #) = +(', #), (t, x) ∈ (0, T) × Ω,u(0, x) = φ(x), .�(0, #) = :(#), (x) ∈ Ω,u(t, x)| ∂Ω = g(t, x), t ∈ >0, T?,    (1.5) 

where Ω =  (0, @) for some fixed @ > 0. 
Where . represents the free surface displacement, and *(', #)  is  the  still-water  depth  
(typically  obtained  from  a  bathymetric map). 

 
Figure 1.1 Water level profile of an example 1D case 

 	�.	'� = 		# Bℎ(#) 	.	#C 
The term is common for many models of physical Phenomena 
 

1.2  Very weak solutions to tsunami equation 

 

In this context the concept of very weak solutions introduced in [4], for the 
analysis of second order hyperbolic equations with irregular coefficients, was applied in 
a series of papers [5], [6] and [7] for different physical models, in order to show a wide 
applicability. In [8, 9] it was applied for a damped wave equation with irregular 
dissipation arising from acoustic problems and an interesting phenomenon of the 
reflection of the original propagating wave was numerically observed. In all these papers 
the theory of very weak solutions is dealt for time-dependent equations.  
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In the recent works [10, 11, 12, 13], the authors start to study the concept of very 
weak solutions for partial differential equations with space-depending coefficients [81]. 
2.2.1 Existence of a very weak solution. In what follows, we consider the Cauchy 
problem 

 D.��(', #) − ∑  FGHI 	�J �ℎG(#)	�J.(', #)� = 0,   (', #) ∈ >0, K? × ℝF ,.(0, #) = .M(#),   .�(0, #) = .I(#),   # ∈ ℝF ,   (1.12) 

with singular coefficients and initial data. Now we want to prove that it has a very weak 
solution. To start with, we regularise the coefficients ℎN and the Cauchy data .M and .I 
by convolution with a suitable mollifier :, generating families of smooth functions (ℎN,O)O, (.M,O)O and (.I,O)O, that is  

 ℎN,O(#) = ℎN ∗ :O(#)   +QR  S = 1, . . . , T (1.13) 
and  

 .M,O(#) = .M ∗ :O(#),   .I,O(#) = .I ∗ :O(#), (1.14) 
where  

 :O(#) = U−1:(#/U),   U ∈ (0,1?. (1.15) 
The function : is a Friedrichs-mollifier, i.e. : ∈ V0∞(�T), : ≥ 0 and Y : = 1   . 

Assumption 1.1 In order to prove the well posedness of the Cauchy problem 

(1.12) in the very weak sense, we ask for the regularisations of the coefficients (ℎN,O)O 

and the Cauchy data (.M,O)O, (.I,O)O to satisfy the assumptions that there exist  M,  I,  � ∈  M such that  
 ∥ ℎS,U ∥[1,∞≲ U− 0, (1.16) 

for S = 1, . . . , T and  

 ∥ .0,U ∥*2≲ U− 1 ,     ∥ .1,U ∥*1≲ U− 2. (1.17) 
 Remark 1.1 We note that making an assumption on the regularisation is more 

general than making it on the function itself. We also mention that such assumptions on 

distributional coefficients, are natural. Indeed, we know that for K ∈ ^′(�F) we can find & ∈   and functions +̀ ∈ V(�F) such that, K = ∑  	`+̀|`|a� . The convolution of K with 

a mollifier gives  K ∗ :O = ∑ 	`+̀ ∗ :O|`|a�  = ∑ +̀ ∗ 	`:O|`|a�  = ∑|`|a�  Ub|`|+̀ ∗(UbI	`:(#/U)),                                                                                                     (1.18) 
and we easily see that the regularisation of K satisfy the above assumption. Fore more 
details, we refer to the structure theorems for distributions (see, e.g. [14]).  

Definition 1 (Moderateness)     
i. A net of functions (+O)O, is said to be *I-moderate, if there exist  ∈  M such that 

 ∥ �U ∥*1≲ U− . 
ii. A net of functions (�O)O, is said to be *�-moderate, if there exist  ∈  M such 

that  ∥ �U ∥*2≲ U− . 
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iii. A net of functions (ℎO)O, is said to be [I,c-moderate, if there exist  ∈  M such 
that  ∥ ℎU ∥[1,∞≲ U− . 

iv. A net of functions (.O)O from V(>0, K?; *�(�F)) ∩ VI(>0, K?; *I(�F)) is said to 
be VI-moderate, if there exist  ∈  M such that  ∥ .U(',⋅) ∥≲ U−  

for all ' ∈ >0, K?.  
 We note that if ℎN ∈ ^′(�F) for S = 1, . . . T and .M, .I ∈ ^′(�F), then the 

regularisations (ℎN,O)O for S = 1, . . . T of the coefficients and (.M,O)O, (.I,O)O of the 
Cauchy data, are moderate in the sense of the last definition. 

Definition 1 (Very weak solution) The net (.O)O ∈ V(>0, K?; *I(�F)) ∩VI(>0, K?; g�(�F)) is said to be a very weak solution to the Cauchy problem (1.12), if 

there exist    −[I,c-moderate regularisations of the coefficients ℎN, for S = 1, . . . T,  −*�-moderate regularisation of .M,  −*I-moderate regularisation of .I,  
 such that (.O)O solves the regularised problem  {	'2.U(', #) − ∑ 	#i �ℎi,U(#)	#i.U(', #)� = 0,   (', #) ∈ j0, Kk × �T, .U(0, #) =Ti=1.0,U(#),   	'.U(0, #) = .1,U(#),   # ∈ �T,    (1.19) 

for all U ∈ (0,1?, and is VI-moderate.  
Theorem 1.1 (Existence) Let the coefficients (ℎN) be positive in the sense that all 

regularisations (ℎN)O are positive, for S = 1, . . . , T, and assume that the regularisations 

of ℎN, .M, .I satisfy the assumptions (1.16) and (1.17). Then the Cauchy problem (1.12) 

has a very weak solution.  
Proof. The nets (ℎN,O)O, for S = 1, . . . , T and (.M,O)O, (.I,O)O are moderate by 

assumption. To prove the existence of a very weak solution, it remains to prove that the 
net (.O)O, solution to the regularised Cauchy problem (1.22), is VI-moderate. Using the 
estimates (2.2), (2.3)[81] and the moderateness assumptions (1.16) and (1.17), we arrive 
at  

 ∥ .U(',⋅) ∥≲ U−2 0−lm#{ 1, 2}, 
for all ' ∈ >0, K?. This concludes the proof.  

In the next sections, we want to prove the uniqueness of the very weak solution to 
the Cauchy problem (1.12) and its consistency with the classical solution when the latter 
exists. 

 
Uniqueness. Let us assume that we are in the case when very weak solutions to 

the Cauchy problem (1.15) exist.  
Definition 2 (Uniqueness) We say that the Cauchy problem (1.12), has a unique 

very weak solution, if for all families of regularisations (ℎN,O)O, (ℎoNO)O, (.M,O)O, (.pM,O)O 
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and (.I,O)O, (.pI,O)O of the coefficients ℎN, for S = 1, . . . T and the Cauchy data .M, .I, 

satisfying  
 ∥ ℎS,U − ℎqS,U ∥[1,∞≤ VsUs  +QRmtt  s > 0, 
  ∥ .0,U − .u0,U ∥*1≤ VlUl  +QRmtt  l > 0, 

and  ∥ .1,U − .u1,U ∥g2≤ V&U&  +QRmtt  & > 0, 
we have  ∥ .U(',⋅) − .uU(',⋅) ∥g2≤ V U , 
for all  > 0, where (.O)O and (.pO)O are the families of solutions to the related 
regularised Cauchy problems.  

Theorem 1.2 (Uniqueness)  Let K > 0. Suppose that ℎN(#) = ℎ(#) for all S = 1, … , T. Assume that for S = 1, . . . T, the regularisations of the coefficients ℎN and the 

regularisations of the Cauchy data .M and .I satisfy the assumptions (1.16) and (1.17). 

Then, the very weak solution to the Cauchy problem (1.12) is unique.  
Proof. Let (ℎN,O , .M,O , .I,O)O, (ℎoNO , .pM,O , .pI,O)O be regularisations of the coefficients ℎN, for S = 1, . . . T and the Cauchy data .M, .I, and let assume that they satisfy ∥ ℎS,U −ℎqS,U ∥[1,∞≤ VsUs  +QRmtt  s > 0, 
  ∥ .0,U − .u0,U ∥*1≤ VlUl  +QRmtt  l > 0, 

and  ∥ .1,U − .u1,U ∥g2≤ V&U&  +QRmtt  & > 0. 
 Let us denote by wO(', #): = .O(', #) − .pO(', #), where (.O)O and (.pO)O are the 

solutions to the families of regularised Cauchy problems, related to the families (ℎN,O , .M,O , .I,O)O and (ℎoNO , .pM,O , .pI,O)O. Easy calculations show that wO solves the Cauchy 
problem  
  {	'2wU(', #) − ∑ 	#i �ℎqi,U(#)	#iwU(', #)�Ti=1  = +U(', #),   (', #) ∈ j0, Kk × �T, wU(0, #) =(.0,U − .u0,U)(#),   	'wU(0, #) = (.1,U − .u1,U)(#),   # ∈ �T,  (1.20) 
where  

 +O(', #) = ∑ 	�J y0ℎG,O(#) − ℎoG,O(#)1	�J.O(', #)zFGHI  .  (1.21) 

 By Duhamel’s principle (see, e.g. [15]), we obtain the following representation  

 wO(', #) = {O(', #) + Y  [O(#, ' − |; |)T|,�M     (1.22) 
for wO, where {O(', #) is the solution to the homogeneous problem  {	'2{U(', #) − ∑ 	#i �ℎqi,U(#)	#i{U(', #)�Ti=1  = 0,   (', #) ∈ j0, Kk × �T, {U(0, #) =(.0,U − .u0,U)(#),   	'{U(0, #) = (.1,U − .u1,U)(#),   # ∈ �T,    (1.23) 
and [O(#, '; |) solves    {	��[O(#, '; |) − ∑  	�J �ℎoG,O(#)	�J[O(#, '; |)�FGHI = 0,   (', #) ∈>0, K? × �F , [O(#, 0; |) = 0,   	�[O(#, 0; |) = +O(|, #),   # ∈ �F .    (1.24) 

 Taking the g� norm on both sides in (1.23) and to estimate {O and [O, we obtain  
 ∥ wU(⋅, ') ∥g2≤∥ {U(⋅, ') ∥g2+ Y ∥ [U(⋅, ' − |; |) ∥g2 T|K0   



15 

 

 ≲ }1 + ∑ ∥ ℎoG,O ∥~�
��FGHI  � y∥ .M,O − .pM,O ∥,� +∥ .I,O − .pI,O ∥~�+ Y ∥�M  +O(|,⋅

) ∥~� T|z. (1.25) 

 Let us estimate ∥ +U(|,⋅) ∥g2. We have  

 ∥ +U(|,⋅) ∥g2≤ ∑ ∥ 	#i y�ℎi,U(⋅) − ℎqi,U(⋅)� 	#i.U(|,⋅)zTi=1  ∥g2 

 ≤ ∑  y∥ 	#iℎi,U − 	#iℎqi,U ∥g∞∥ 	#i.U ∥g2 +∥ ℎi,U − ℎqi,U ∥g∞∥ 	#i2 .U ∥g2zTi=1 . 
 In the last inequality, we used the product rule for derivatives and the fact that ∥ 	#i �ℎi,U − ℎqi,U� 	#i.U ∥g2 and ∥ �ℎi,U − ℎqi,U� 	#i2 .U ∥g2 can be estimated by ∥ 	#iℎi,U −	#iℎqi,U ∥g∞∥ 	#i.U ∥g2 and ∥ ℎi,U − ℎqi,U ∥g∞∥ 	#i2 .U ∥g2, respectively. We have by 

assumption that for all S = 1, . . . , T, the net (ℎoN,O)O is moderate. The net (.O)O is also 
moderate as a very weak solution. Thus, there exists  ∈   such that                             ∑ ∥ ℎoG,O ∥~�

�� ≲ Ub� ,FGHI                                                           (1.26) 
  
 ∑ ∥ 	�J.O ∥~�≲ Ub�  m&T  ∥ �.O ∥~�≲ Ub� .FGHI   (1.27) 

 On the other hand, we have that  
 �QR S = 1, . . . , T, ∥ ℎN,O − ℎoN,O ∥��,�≤ V�U�  +QRmtt  s > 0, 
  ∥ .0,U − .u0,U ∥*1≤ VlUl  +QRmtt  l > 0, 

and  ∥ .1,U − .u1,U ∥g2≤ V&U&  +QRmtt  & > 0. 
 It follows that  ∥ wU(⋅, ') ∥g2≲ Ut, (1.28) 

for all t ∈  .  
Remark 1.2 The assumption that ℎN(#) = ℎ(#) for all S = 1, … , T, in Theorem 

1.2 can be removed if we know that the solution .(', #) of the problem (1.12) is from the 

class of distributions, that is, .(',⋅) ∈ ^′(�F) for all ' ∈ >0, K?.  
Consistency. Now, we want to prove the consistency of the very weak solution 

with the classical one, when the latter exists, which means that, when the coefficients 
and the Cauchy data are regular enough, the very weak solution converges to the 
classical one in an appropriate norm. 

Theorem 1.3 (Consistency)  Let ℎ ∈ >[I,c(�F)?F be positive. Assume that .M ∈ *�(�F) and .I ∈ *I(�F), and let us consider the Cauchy problem  
 {.''(', #) − ∑ 	#i �ℎi(#)	#i.(', #)� = 0,Ti=1     (', #) ∈ j0, Kk × �T, .(0, #) =.0(#),   .'(0, #) = .1(#),   # ∈ �T.  (1.29) 
 Let (.O)O be a very weak solution of (1.29). Then, for any regularising families ℎG,O = ℎG ∗ :I,O with i = 1, . . . T, .M,O = .M ∗ :�,O and .I,O = .I ∗ :�,O for any :� ∈ VMc, :� ≥ 0, Y :s = 1   , s = 1,2,3, the net (.O)O converges to the classical solution of the 

Cauchy problem (1.29) in g� as U → 0.  
Proof. Let . be the classical solution. It solves  
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 {.''(', #) − ∑ 	#i �ℎi(#)	#i.(', #)�Ti=1  = 0,   (', #) ∈ j0, Kk × �T, .(0, #) =.0(#),   .'(0, #) = .1(#),   # ∈ �T,  
and let (.O)O be the very weak solution. It solves  {	'2.U(', #) − ∑ 	#i �ℎi,U(#)	#i.U(', #)�Ti=1  = 0,   (', #) ∈ j0, Kk × �T, .U(0, #) =.0,U(#),   	'.U(0, #) = .1,U(#),   # ∈ �T.  

 Let us denote by {O(', #): = .O(', #) − .(', #). Then {O solves the problem  
 {	'2{U(', #) − ∑ 	#i �ℎi,U(#)	#i{U(', #)�Ti=1  = �U(', #),   (', #) ∈

j0, Kk × �T, {U(0, #) = (.0,U − .0)(#),   	'{U(0, #) = (.1,U − .1)(#),   # ∈ �T,  
where  �O(', #): = ∑ 	#i y0ℎi,U(#) − ℎi(#)1	#i.(', #)zTi=1  . 

 Once again, using Duhamel’s principle and similar arguments as in Theorem 1.3, 
we arrive at  

∥ {U(⋅, ') ∥g2≲ }1 + ∑ ∥ ℎi,U ∥g∞12Ti=1  � y∥ .0,U − .0 ∥*1 +∥ .1,U − .1 ∥g2+ Y ∥K0  �U(|,⋅) ∥g2 T|z, (1.30) 
where �O is estimated by  ∥ �O(|,⋅) ∥g2≤ ∑ y∥ 	#iℎi,U − 	#iℎi ∥g∞∥ 	#i. ∥g2 +∥ ℎi,U − ℎi ∥g∞∥ 	#i2 . ∥g2zTi=1  .(1.31) 

 Since ∥ ℎi,U − ℎi ∥[1,∞→ 0 as U → 0 and that . is a classical solution, it follows that 

the right hand side in the last inequality tends to 0 as U → 0. Thus  
 ∥ �O(|,⋅) ∥g2→ 0  m| U → 0. (1.32) 

 From the other hand, for all i = 1, . . . , T the coefficients ℎG,O are bounded since ℎ ∈ >[I,c(�F)?F and we have that  
 ∥ .0,U − .0 ∥*1→ 0, (1.33) 

and  ∥ .1,U − .1 ∥g2→ 0, (1.34) 

as U tends to 0. It follows that (.O)O converges to . in g�.  
 
1.3  Finite difference schemes: 1D and 2D models  

 

In this section, we convert 1-dimensional and 2-dimensional tsunami wave 
equations into explicit and implicit difference schemes and study these schemes for 
stability and accuracy. 

We introduce space-time grids with steps �, ℎ in the variables ', # respectively, 
that are  ��� = �0'�,#N1: '�, = s�; #N = Sℎ; (s, S) ∈ ��, 

��� = �0'�,#N1: '�, = s�; #N = Sℎ; (s, S) ∈ ��, 
where � ≔ {(s, S) ∈ ���: 0 < s < �; 0 < S <  ; } 
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� ≔ {(s, S) ∈ ���: 0 ≤ �; 0 < S ≤  ; } 
and @ = ℎ , K = ��. 

One  calculates  an  approximate  solution  from  discrete  points  in  the  time-
spatial grid  Ω�ℎ.   On this grid we approximate the problem (1.5) using the finite 
difference method.  

Discretisation. Approximate derivatives by central differences
	�)��� ≈ )����b�)���)����

∆��  
Similarly for the # and $ derivatives. 

1.3.1 Explicit scheme 
To solve the partial differential equation (1.5) with respect to both space and time. 

We approximate the time and space derivative by central difference, thus we have 

   
)����b�)���)����

�� − *N� )���� b�)���)����
�� − B,���� b,��� C B)���� b)����

�� C = +N� ,              (1.35) 

or, with V =  �/ℎ .N��I = 2.N� − .N�bI + V�*N�0.N�I� − 2.N� + .NbI� 1 + �V0*N�I� − *N�1 ��� 0.N�I� −.NbI� 1 + ℎ���+N�                                                                                                          (1.36) 
Schematic representation of the scheme (1.39) is shown on Fig. 1.2. 

 
Figure 1.2 Schematic visualization of the numerical scheme (1.36) for (1.5) 
 
for (s, S) ∈  ��� , where *N�: = ℎ(s�, Sℎ), +N�: = +(s�, Sℎ) with initial conditions .NM = �N , .NI − .NbI = 2�:N 
For(i)∈  , ¡ and with boundary conditions .M� = 0, .�� = 0 
In order to compute .N�bI we need to implement the second initial condition 

.�(0, #N) = :(#N) = .NI − .NbI2∆' + ¢(��) 
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With :N ∶=  :(#N) one can rewrite the last expression as .NbI = .NI − 2�:N + ¢(��) 
and the second time row can be calculated as .NI = .NM + �:N + ��� *NM0.N�IM − 2.NM + .NbIM 1 + �V0*N�IM − *NM1 ��� (.N�IM −.NbIM )+ ����¤�¥�  

To solve the equation (1.39), we use the simple iterative method. 
von Neumann Stability Analysis 

Here, we consider stability analyses for numerical scheme (1.36). .G��I = 2.G� − .G�bI + V�*0.G�I� − 2.G� + .GbI� 1 + V�2 	*	# (.G�I� − .GbI� ) 

In order to investigate the stability of the scheme we start with the usual ansatz .G� =  ¦�§N¨G∆�, ¦��I§N¨G∆� = 2¦�§N¨G∆� − ¦�bI§N¨G∆� + V�*¦�0§N¨(G�I)∆� − 2§N¨G∆� + §N¨(GbI)∆�1+ V�2 	*	# (§N¨(G�I)∆� − §N¨(GbI)∆�) 

Then we divide both sides on ¦�§N¨G∆� ¦ = 2 + ¦�bI + V�*0§N¨∆� − 2 + §bN¨∆�1 + V�2 	*	# (§N¨∆� − §bN¨∆�) 

¦ = 2 + ¦�bI + V�*(2 cos(�∆#) − 2) + V�2 	*	# (2S|S&(�∆#)) 

¦� − }2 + 2V�* ¬−2|S&� B�∆#2 C­ + V� 	*	# (S|S&(�∆#))� ¦ + 1 = 0, 
which leads to the following expression for the amplification factor ¦(�) 
After that the last expression becomes just a quadratic equation 

for ¦, namely 

¦� − }2 + 4V�* ¬|S&� B�∆#2 C­ + V� 	*	# (S|S&(�∆#))� ¦ + 1 = 0, 
m = ¯ = 1, ° = 2 + 4V�* ¬|S&� B�∆#2 C­ + V� 	*	# (S|S&(�∆#)) 

¦I ∙ ¦� = 1 
Possibilities ¦I > 1, ¦� < 1, ¦I = ¦� = 1 
For stability |¦| ≤ 1 so ¦I = ¦� = 1 is true. 
Solutions of the equation for ¦ (�) read 

¦I = −° + √°� − 4m¯2m ; ¦� = −° − √°� − 4m¯2m  
Roots are equal to 1 only when roots are complex 
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°� − 4m¯ < 0 
¾2 + 4V�* ¬|S&� B�∆#2 C­ + V� 	*	# 0S|S&(�∆#)1¿� − 4 < 0 

4 ¾1 + 2V�* ¬|S&� B�∆#2 C­ + V�2 	*	# 0S|S&(�∆#)1¿� < 4 
C(2C* B|S&� �¨∆�� �C + �� �,�� 0S|S&(�∆#)1) < −2 

V < −2 − �2 	*	# 0S|S&(�∆#)1
*|S&� B�∆#2 C  

This is true always if C<1 
That is, the scheme is conditional stable. The stability condition reads 

V < −2 − �2 	*	# 0S|S&(�∆#)1
*|S&� B�∆#2 C  

1.3.2 Implicit scheme 
 For simplicity, consider the Crank-Nicolson scheme for the problem (1.5) which 

is the average of the central differences about the point (S) and (S, s + 1). First we 
transform the partial differential equation (1.5) into the implicit finite-difference 
equation then we get )����b�)���)����

�� − ,����� 0.N�I��I − 2.N��I + .NbI��I + .N�I�bI − 2.N�bI + .NbI�bI1 −
(,���� b,��� )()���� b)����

�� ) = +N�                                                                                         (1.37) 

 
Schematic diagram of the numerical scheme (1.37) is shown on Fig. (1.3). 
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Figure 1.3  Schematic visualization of the implicit numerical scheme (1.37) for 
(1.5) 

The equation (1.40) can be reduced to the most general form: mN.N�I��I − °N.N��I + ¯N.NbI��I = +N, 
where mN = ��*N, °N = 2ℎ� + 2��*N, ¯N = ��*N,   + N = −4ℎ�.N� + 2ℎ�.N�b I − ��*N 0.N�I�bI − 2.N�bI + .NbI�bI1+ 2��(*N�I − *N )0.N�I� − .N�1 − 2ℎ���+N . 
The system has a tridiagonal structure so we solve it using by Thomas method and the 
conditions for the correctness and stability of the Thomas method are like this: 

 Ã°SÃ>|mS| + |¯S|    ∀S = 1,  − 1  
Here, we consider stability analyses for numerical scheme (1.37). 
In order to investigate the stability of the scheme we start with the usual ansatz 
 .G� = ¦�§N¨G∆�, ¦��I§N¨G∆� = 2¦�§N¨G∆� − ¦�bI§N¨G∆�+ V�*0¦��I§N¨(G�I)∆� − 2¦��I§N¨G∆� + ¦��I§N¨(GbI)∆� + ¦�bI§N¨(G�I)∆�

− 2¦�bI§N¨G∆� + ¦�bI§N¨(GbI)∆�1 + �2 С 	*	# (¦�§N¨(G�I)∆� − ¦�§N¨(GbI)∆�) 

 

Then we divide both sides on ¦�§N¨G∆�  ¦ = 2 − ¦bI + V�* �¦0§N¨∆� − 2 + §bN¨∆�1 + ¦bI0§N¨∆� − 2 + §bN¨∆�1�
+ �2 С 	*	# (§N¨∆� − §bN¨∆�) 

which leads to the following expression for the amplification factor ¦(�) 
After that the last expression becomes just a quadratic equation 

for ¦, namely ¦� B1 − 2*V|S&� �¨∆�� �C − ¦(2 + �V �,�� S|S&(�∆#))+(1-2H�V|S& ¨∆�� )=0 

After solving the quadratic equation and some reductions we get |¦|� = 1 
That is, the implicit scheme (1.37) is absolutely stable. 
 

for (s, S) ∈  ��� ,where *N�: = ℎ(s�, Sℎ), +N�: = +(s�, Sℎ) with initial conditions .NM = �N , .NI−.NM = ��N , 
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For(i)∈  , ¡ and with boundary conditions .M� = 0, .�� = 0, 
for (S, s) ∈ 0,  × 0, �, respectively. It is well-known, that the implicit scheme (1.37) is 
unconditionally stable and it has accuracy order ¢(� + |ℎ|�), see, for example [16]. 
 

1.3.3 Numerical Accuracy Analysis of 1D equation 
The numerical  solution  requires  a  certain level of numerical accuracy.  We 

check the accuracy of we used the finite-difference scheme using absolute error and 
norm error g� which is defined as §RRÆÇÈ = ||. − .�)É||, g� = Ê∑ (. − .�)É)�∆#∆$�NHI , 
where . denotes the exact value and .�)É denotes the approximation 

When H=1 the original problem (1.6) has an exact solution with initial conditions .(0, #) = Ë|S& Ì�Í  
.(', #) = Ë|S& Î#t ¯Q| Î¯'t  

Table 1.1  Maximum norm and L�norm errors 
 

 ∆#  ∆' Explicit scheme Implicit scheme 
max error g� − &QRl max error g� − &QRl 

0.1 0.2 9.77658e+2 4.58484 e+2 3.23973e-1 1.89892e-1 
0,01 0,01� 3.93016e-2 2.29719-2 3.93029e-3 2.29719 e-3 
0,001 0,001� 5.43811e-2 1.00549 e-2 5.43828e-3 1.00549 e-3 
0,0001 0,0001� 3.44479e-3 1.73587 e-4 3.44154e-4 1.73589 e-4 

 
Table 1.1 displays the convergence rate of displacement solution under grid 

refinement. The convergence rates in maximum norm at the final time shows forth order 
convergence 
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Figure 1.4  Comparison of exact and numerical solutions when ' = 1, ∆# =0.1, ∆' = 0.2, a) exact solution b) solution using the implicit scheme c) solution using 
the explicit scheme 

 
Figure 1.5  Comparison of exact and numerical solutions when ' = 1, ∆# =0.01, ∆' = 0.0001, a) exact solution b) solution using the implicit scheme c) solution 

using the explicit scheme 
 From Table 1 and Figures 1.4 and 1.5 we see that the explicit difference scheme 

is not stable at large time steps and the implicit difference scheme is stable at large time 
steps therefore, in all our calculations, we use an indistinct difference scheme.  

The 2D case 

The two-dimensional tsunami model  

⎩⎪⎨
⎪⎧.��(', #, $) − >	�0*(', #, $)	�.(', #, $)1 + 	� �*(', #, $)	�.(', #, $)�? +	��*(', #, $) = +(', #, $), (t, x, y) ∈ (0, T) × Ωu(0, x, y) = φ(x, y), .�(0, #, $) = :(#, $), (x, y) ∈ Ωu(t, x, y)| ∂Ω = g(t, x, y), t ∈ >0, T?.

 (1.38) 

We consider this equation on the rectangular space domain. We introduce space-
time grids with steps �, ℎI, ℎ� in the variables ', #, $ respectively that are  �ℎ1ℎ2� = Õ�'s,#S, $i� : 's, = s'; #S = Sℎ1; $i = iℎ2; 0s, S, i1 ∈ �Ö, 

�ℎ1ℎ2� = Õ�'s,#S, $i� : 's, = s'; #S = Sℎ; $i = iℎ; 0s, S, i1 ∈ �Ö, 
where � ≔ {(s, S, i) ∈ ���: 0 < s < �; 0 < S <  I; 0 < i <  �}, � ≔ {(s, S, i) ∈ ��� : 0 < s ≤ �; 0 < S ≤  I; 0 < i ≤  �}, 
and @ = ℎI I, × = ℎ� �, K = ��. 
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When H=1 (1.38) equation has analytical solution 
We adopt the unit square (#, $)  ∈  >0;  1?  ×  >0;  1? as the spatial solution domain 

with 100 elements per each side and 100 interior points, c = 1, with initial condition .(#, $, 0)  =  |S&(2Î#)|S&(2Î$), 	.(#, $, 0)	' =  0, 
and .(0, $, ')  =  .(1, $, ')  =  .(#, 0, ')  = .($, 1, ')  =  0 on the boundaries. The 
analytical solution of equation (1.38) is as flows: .(#, $, ')  =  ¯Q|(√2Î')|S&(2Î#)|S&(2Î$). 

Explicit scheme 

To solve the partial differential equation (1.5) with respect to both space and time. 
We approximate the time and space derivative by central difference, for simplicity, we 
take  I =  � ℎI = ℎ� = ℎ and thus we have 

 )�,J���b�)�,J� �)�,J���
�� − *N,G� B)���,J� b�)�,J� �)���,J�

�� + )�,J��� b�)�,J� �)�,J���
�� C +

                     + B,���,J� b,�,J�
� C B)���,J� b)�,J�

� C − B,�,J��� b,�,J�
� C B)�,J��� b)�,J�

� C = +N,G� ,                 (1.39) 

for (s, S, i) ∈  ��� ,where *N,G� : = ℎ(Sℎ), +N,G� : = +(s�, Sℎ, iℎ) with initial conditions .N,GM = �N,G, .N,GI − .N,GM = ��N,G,  
For (i, j) ∈  , Ø and with boundary conditions .M� = 0, .�� = 0. 

Implicit scheme 

We consider the Crank-Nicolson scheme for the problem (1.38) which is the 
average of the central differences about the point (S, i) and (S, i, s + 1). )�,J���b�)�,J� �)�,J���

�� − ,�,J�
Ù�� �(.N�I,G��I − 2.N,G��I + .NbI,G��I + .N�I,G�bI − 2.N,G�bI + .NbI,G�bI ) +

0.N�I,G��I − 2.N,G��I + .NbI,G��I + .N�I,G�bI − 2.N,G�bI + .NbI,G�bI 1� + B,���,J� b,�,J�
� C B)���,J� b)�,J�

� C −
                                              (,�,J��� b,�,J�

� )()�,J��� b)�,J�
� ) = +N,G�                                           (1.40) 

It is well-known, that the implicit scheme (1.40) is unconditionally stable and it 
has accuracy order ¢(� + |ℎ|�). 

Numerical Accuracy Analysis of 2D equation. 

Graphic comparisons of the exact solution with the numerical and errors are 
shown in figure 1.6. 

Table 1.2 Maximum norm and L�norm errors 
 ∆#  ∆' Explicit scheme Implicit scheme 

max error g� − &QRl max error g� − &QRl 
0.1 0.2 1.3492e+3 7.2582e+2 1.77618e-1 0.47569e-1 
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0,01 0,01� 4.35651e-3 2.18914e-3 2.45655e-3 1.48964e-3 
0,001 0,001� 3.52562e-3 6.27457e-4 2.12562e-3 4.38543e-4 
0,0001 0,0001� 2.87473e-5 1.24878e-6 1.87473e-3 1.04570e-4 

Table 1.2 displays the convergence rate of displacement solution under grid 
refinement. The convergence rates in maximum norm at the final time shows forth order 
convergence. 

 
Figure 1.6  Comparison of exact and numerical solutions when t = 1, ∆x =0.01, ∆t = 0.0001, from left to right exact solution, solution using the implicit scheme, 

solution using the explicit scheme 
 

 
Figure 1.7 Solution for time t = 1, ∆x = ∆y = 0,01, ∆t = 0,0001 from left to right 

exact, numerical, error 
Table 1.2 and Figures 1.6 and 1.7 shows the implicit difference scheme is stable at 

large time steps.  
 
1.4  Caspian sea tsunami study 

 

History has shown that tsunamis occur not only in large seas but also in small 
seas. As described in the introductory section, there have been many earthquakes in our 
Caspian Sea, and each year there are earthquakes of different magnitudes, resulting in 
tsunami waves, which have been studied and predicted by scientists from Russia, Iran 
and Azerbaijan. Here, scientists from these countries were engaged only in modeling 
their part of the Caspian Sea. No one has studied the Kazakh side and predicted how 
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high it will reach the coast in the event of a tsunami. In this section, we will model the 
Aktau port and on the Caspian Sea using the model we studied, and make various 
predictions. 

To model a possible tsunami in the port of Aktau, we need a submarine 
bathymetric map of the Caspian Sea, which we obtain from the National Centers for 
Environmental Information portal[17] and a bathymetric map of the area we are going to 
model is shown in figure 1.8. 

 
Figure1.8 Bathymetric map of Caspian Sea 

The city of Aktau is very close to the sea, as shown in Figure 1.9; 3 kilometers 
from the sea there are many infrastructure, kindergartens, schools, residential areas, 
shopping centers, so tsunami risk modeling is very important in this area.  

 
Figure 1.9 Aktau coast 

 
As a mathematical model, we get the following model described above.  .��(', #, $) − >	�0ℎ(#, $)	�.(#, $)1 + 	� �ℎ(#, $)	�.(', #, $)�? = +(', #, $), (', #, $)∈ (0, K) × Ω 
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Here H is the sea bottom topology which we get from the bathymetric map, 
as a initial condition, we get a function that describes the first wave that occurs after an 
earthquake. As a boundary condition, we use Dirichlet boundary condition. 

The main focus here is to predict how many meters the tsunami wave will reach 
the shore.  

Here we simulate the Caspian Sea tsunami between Aktau and Makhachkala, as 
shown in the map below fig 1.10, the distance between Aktau and Makhachkala is 300 
km. Suppose that the initial wave from an underwater earthquake occurred between 
Aktau and Makhachkala, then we can predict, relative to the height of the first wave, 
how high the wave will reach Aktau and Makhachkala. 

 

 
Figure 1.10 Distance between Aktau and Makhachkala and epicenter of the 

initial wave 
 
The numerical method used for 1D and 2D cases is very similar. Space and time 

are divided into a grid. The size of the basin area was determined as 300 km by 300 km. 
The distance between each grid point Δx and Δy was set equal to 0.5 km. The time step 
size was set Δt = 1/200 s. We used a finite difference method to approximate the 2D 
tsunami equation. The spatial derivatives were approximated using second-order 
centered differences. Time derivatives were fitted using second-order centered 
differences according to the Crank- Nicolson method. 

As shown in Figure 1.8 from the Bathymetric Map of the Caspian Sea, we can 
approximately determine the function of the basin profile as follow 

*(#) =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 0,4#, 0 ≤ # < 2510 + 1,8(# − 25), 25 ≤ # < 75100 + 2(# − 75), 75 ≤ # < 125200, 125 ≤ # < 150200 − 1,25(# − 150), 150 ≤ # < 230100 − 5/3(# − 230), 230 ≤ # < 26050 − 4/3(# − 260), 260 ≤ # < 29010 − (# − 290), 290 ≤ # < 300

 

Such that the depth would range from 0 m to 200 m. We made the depth of water 
to be positive at all x since very high numerical error occurs if we let depth profile be 
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negative-this would correspond to above sea level. The initial condition was given as a 
Gaussian U. w(0, #) = 20§#Þ (−(# − 150)�/10) 

 
Figure 1.11  Plot of –h, the depth of profile and initial condition 

The results of this simulation are shown in Figure 1.12. As the tsunami 
approached the coast, the wave slows down and the altitude increased. 

 
Figure 1.12 1D simulation results with depth profile at various time step 
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Figure 1.13 1D simulation results without depth profile at various time step 

The 2D results given as below 

 
 
Figure 1.14 2D simulation results without depth profile at various time steps 
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Different predictions related to the height of the initial wave 

To get the real value of the wave height, we have to convert the dimensionless 
form to dimensional using the following formulations:  # = #g; $ = $g; ' = 'K; . = .^. 
Tsunami Speed Formula ß = Ê�ℎ. 
Where g acceleration of gravity, h is water depth. 

If we propose the initial wave occur in 150 km from Aktau city the tsunami wave 
will reach to the coastal area in 56 minute. 

Table 1.3 Calculation result 
 

Initial wave height The wave height in the sea shore 
2 m 2.94 m 
3 m 4.4 m 
4 m 5.89 m 
8 m 11.75m 

Considering that the shores of the Caspian Sea in Aktau are 1-3 m above the water 
level. From the forecasts above, it can be seen that a strong earthquake in the middle of 
the sea will cause great damage to the city of Aktau. 

 
1.5  Numerical results 

 

In this section, we numerically solve the 1D and 2D equations of tsunami and 
acoustic waves and visualize the results. Too solve numerically we use finite difference 
schemes that are shown in the previous section. 

 
1.5.1 Numerical results of tsunami wave equation 

1D tsunami wave equation. To solve the partial differential equation (1.5) we 
use (1.6) and (1.7) finite difference schemes we consider two particular cases of the 
coefficient h(x). Here we allow them to be distributional, in particular, to have �like 
singularities. As it was theoretically outlined in [6-7] we start to analyse our problem by 
regularising distributions h(x) by a parameter à, that is, we set ℎO(#): = (ℎ ∗ �O)(#) 

as the convolution with the mollifier 

�O(#) = 1U �(#/U) 
With 
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ℎI(#) = D 100;  0 ≤ x <  70100  9(x −  70);  70 ≤ x <  8010;  80 ≤ x <  100  

 ℎ�(#) = á 100;  0 ≤ x <  7510;  75 ≤ x <  100 

  
For all simulations we take ∆t = 0,05, ∆x = 0,5 

 
Figure 1.15  Case 1 displacement of wave at different times 
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Figure 1.16 Case 2 displacement of wave at different times 

 
Figure 1.17 Comparison of both cases for time t=4.0 and t=5.0 

 

 
Figure 1.18 Comparison of wavelengths in both cases 
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Figures 1.15-1.18 show the results of simulations obtained at different times as a 

H(x) function we use the first and second cases. in the second case, the singularity is 
greater than in the first case, as we can see in the figure, a small part of the wave goes 
backward, and the wave height decreases slightly, and in the first case the singularity is 
small and the wave does not go back, but the wave height also increases. 

 
2D tsunami wave equation. As the 1D case for H we get same cases, we do the 

same simulation for 2D case  

 
Figure 1.19 Case 1 displacement of waves at different times 
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Figure 1.20 Case 1 displacement of wave at different times 

In the two-dimensional model, we also consider the same two cases for the 
function H (x, y) that we used in the one-dimensional case, and from these figures, we 
can clearly see the small part of the wave return back in the case of a higher singularity. 

 
1.5.2 Numerical simulations of the 1d wave equation with a distributional 

coefficient and source term 

 
In this section, we illustrate numerical experiments for the one-dimensional wave 

equation with �-like terms. Our research is connecting the theory with the numerical 
realisations. By using results on very weak solutions introduced by Ruzhansky with his 
co-authors, we investigate a corresponding regularized problem. In contrast to our 
expectations, the experiments show that the solution of the regularized problem has a 
“good” behavior[83].  

 
Here, we study the Cauchy-Dirichlet problem for the 1D-Wave Equation  
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⎩⎪⎨
⎪⎧	��.(', #) − m(')	��.(', #) + â(').(', #) = 0, (', #) ∈ >0, K? × >0,10?,.(', 0) = 0,   ' ∈ >0, K?,.(', 10) = 0,   ' ∈ >0, K?,.(0, #) = .M(#),   # ∈ >0,10?,	�.(0, #) = .I(#),   # ∈ >0,10?.

(1.41) 
In this work we consider several particular cases of the coefficient m(') and the 

mass term â('). Here we allow them to be distributional, in particular, to have �–like 
singularities. 

As it was theoretically outlined in [6] and [18], we start to analyse our problem by 
regularising distributions m(') and â(') by a parameter U, that is, we set  

 mO('): = (m ∗ �O)('),    âO('): = (â ∗ �O)('), 
as the convolution with the mollifier  
 �O(') = 1U �('/U), 
with  

�(') = {1̄ §1/('2+1), |'| ≤ 1, 0, |'| > 1,  
 where ¯ ≃ 0.443994 to get Y �(')T' = 1.IbI   Then, instead of (1.41) we consider 

the regularised problem  
 

⎩⎪⎨
⎪⎧	��� .O(', #) − mO(')	��� .O(', #) + âO(').O(', #) = 0, (', #) ∈ >0, K? × >0,10?,.O(', 0) = 0, ' ∈ >0, K?,.O(', 10) = 0, ' ∈ >0, K?,.O(0, #) = .M(#), # ∈ >0,10?,	�.O(0, #) = 0, # ∈ >0,10?.

  (1.42) 

 Here, we put .I(#) ≡ 0 and  

 .M(#) = å§I/((�bÙ.I)�bM.I), |# − 4.1| < 0.1,0, |# − 4.1| ≥ 0.1.   

Note that |.ÞÞ .M ⊂ >4,4.2?. 
For m and â we consider the following combinations of the possible cases, with � 

denoting the standard Dirac’s delta-distribution:   
    • m = 1, â = 0;  
    • m = 1 + 5�(' − 3), â = 0;  
    • m = 1 + 5�(' − 3), â = 1;  
    • m = 1 + 5�(' − 3), â = 10�(' − 7);  
    • m = 1 + 5�(' − 3), â = 1 + 10�(' − 7);  
    • m = 1 + 5�(' − 3), â = 1 + 5�′(' − 1.5);  
In Figure 1.21, we compare solutions of the problem (1.42) in different cases. In 

the upper-left plot, we compare the behaviours of the solution corresponding to the cases 
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(A1) and (A2) coloured by blue and red, respectively, at ' = 3.2 for U = 0.1. In the 
upper-right plot, we compare the behaviours of the solution corresponding to the cases 
(A1) and (A3) coloured by blue and red, respectively, at ' = 3.2 for U = 0.1. In the 
bottom plot, we compare the behaviour of the solutions of the problem (1.42) 
corresponding to the cases (A1) and (A6) coloured by blue and red, respectively, at ' = 3.2 for U = 0.1. Here when the mass term â is positive, we see that the wave level is 
lower than when it is absent. But when â = 1 + 5�′(' − 1.5), it can be interpreted as a 
quickly changeable mass (not only volume but also its sign), and we get less stable 
waves, as it is shown in the plot. 

 

 
Figure  1.21 In all plots, from right to left we see the solution of the problem 

(1.42) in the case (A1) coloured by blue at ' = 3.2 and U = 0.1. Red lines: in the upper-
left plot, we see the solution of the problem (1.45) in the case (A2); in the upper-right 
plot, we see the solution of the problem (1.45) in the case (A3); in the bottom plot, we 

see the solution of the problem (1.42) in the case (A6) at ' = 3.2, for U = 0.1 
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Figure  1.22  In the left plot, from up to bottom we see the solution of the 

problem (1.42) coloured by blue in the case (A1) and by red in the case (A2) at ' =3,3.2,3.4. In the right plot, from up to bottom we can see the solution of the problem 
(1.42) coloured by blue in the case (A2) and by red in the case (B4) at ' = 7,7.2,7.4, for U = 0.1 

                
Figure  1.23  In the both plots, we compare the kinetic energy of the system 

corresponding to the problem (1.42) in the case (B5) for different values of U =0.03,0.05,0.08,0.1. In the right plot we focus near ' = 3 and can see an influence to the 
energy of the singular propagation speed: the propagation speed effects comparatively 

more than the mass term 

     



37 

 

Figure  1.24 In the left plot, we compare the kinetic energy of the system 
corresponding to the problem (1.42) in the cases (A1), coloured by blue, and (A2), 

which is coloured by red, for U = 0.1. In the right plot, we compare the kinetic energy of 
the system corresponding to the problem (1.42) in the cases (A3), coloured by blue, and 

(B5), which is coloured by red, for U = 0.1 
  In Figure 1.22 in the left plot, from up to bottom we see the solution of the 

problem (1.42) coloured by blue in the case (A1) and by red in the case (A2) at ' =3,3.2,3.4. In the right plot, from up to bottom we can see the solution of the problem 
(1.42) coloured by blue in the case (A2) and by red in the case (B4) at ' = 7,7.2,7.4, for U = 0.1. 

In Figure 1.23, we compare the “kinetic energy"  ^(') = Y |	�.O(#, ')|�T#IMM   
of the system corresponding to the problem (1.42) in the case (B5) for different 

values of U = 0.03,0.05,0.08,0.1. In Figure 4 in the left plot, we compare the kinetic 
energy of the system corresponding to the problem (1.42) in the cases (A1), coloured by 
blue, and (A2), which is coloured by red, for U = 0.1. In the right plot, we compare the 
kinetic energy of the system corresponding to the problem (1.42) in the cases (A3), 
coloured by blue, and (B5), which is coloured by red, for U = 0.1. The analysis shows 
that the kinetic energy of the singular problems is higher than the problems without �–
like terms. However, in the both cases the kinetic energy decays in time. In the left plot, 
we analyse the behaviour of the kinetic energy, in particular, how it depends on the 
parameter U. Even if the energy function shows impulses at the shocked moments, in 
general, it decays in time. 

All numerical computations are made in C++ by using the sweep method. In 
above numerical simulations, we used the Matlab R2017b. For all simulations we take �' = 0.01, �# = 0.1. 

The analysis carried out in this section showed that the numerical methods work 
well in the situations where a rigorous mathematical formulation of the problem is 
difficult within the classical theory of distributions. The concept of very weak solutions 
eliminates this difficulty, giving the well-posedness results for equations with �–like 
coefficients. Numerical experiments showed that a notion of very weak solutions 
introduced in [4] is very well adapted for numerical simulations. Moreover, by the 
recently constructed theory of very weak solutions we can talk about uniqueness of the 
numerical solutions to differential equations with �–like coefficients in a suitable sense. 

 
1.5.3 Numerical results of acoustic wave equation - homogeneous case 
In this section, we simulate the propagation of a two-dimensional acoustic wave 

equation in a homogeneous and heterogeneous medium. 
In Homogeneous case, the acoustic wave equation is given by 	�ç(', #, $)	'� = ¯� }	�ç(', #, $)	#� + 	�ç(', #, $)	$� � + è(', #, $) 
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Where ç is pressure, è is source term, ¯ is wave velocity. 
The difference schemes of this equation are the same as the tsunami wave 

equation, the only difference in the coefficient so in this section we just present 
numerical simulations. 

Numerical results as follow: 

 
 

Figure1.25 Numerical result for homogeneous case 
 
In heterogeneous case, the acoustic wave equation is given by 	�ç(', #, $)	'� = ¯�(#, $) }	�ç(', #, $)	#� + 	�ç(', #, $)	$� � + è(', #, $) 
An heterogeneous medium, the wave velocity varies depending on the structure of 

the medium. Here we consider the propagation of waves the following medium is shown 
in figure 1.26, where the wave velocities differ in the white and blue regions, for 
example, in our case, in the blue region, the wave speed is 580 m/s, and in the white 
region, 464 m /s. 
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Figure 1.26 Simple heterogeneous medium 

 
Figure 1.27 Numerical result for heterogeneous case 

In Figure 1.27, we see the propagation of an acoustic wave in a non-homogeneous 
medium, from which we find that when sound travels to another medium, its velocity 
changes and occurs the phenomenon of reflection. 

 
1.6  Conclusion 

 

In this chapter, we have described mathematical models of tsunami and acoustic 
wave equations, given the proof of existence, uniqueness and convergence of the very 
weak solution to the tsunami wave equation. And constructed difference schemes for 
one-dimensional and two-dimensional cases and studied these schemes for stability and 
accuracy. 

Modeled Caspian tsunami by the tsunami equation and made different predictions 
related to the height of the initial wave. At the end of this chapter, we made numerical 
simulations 1D and 2D tsunami and acoustic wave equations for 2 different cases. 
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2 REVIEW OF PARALLEL NUMERICAL IMPLEMENTATION OF 

HYPERBOLIC TYPE EQUATIONS 

 

In the second chapter, we present a parallel numerical implementation of 
hyperbolic wave equations. Here we propose 3 parallel algorithms, and the third 
algorithm has published in the scientific journal [82].  

In the first algorithm, we consider the MPI implementation of the two-
dimensional wave equation with a singular coefficient, and the second algorithm 
presents the CUDA implementation of the two-dimensional tsunami equation. 

At the end of this chapter, we present a hybrid implementation of the acoustic 
wave problem, and then compare the results of different implementations. In a hybrid 
implementation, we jointly use Open MP, CUDA and MPI technologies to solve one 
problem and present the calculation results. 

 

2.1  The architecture of parallel computing environments 

 

Currently, there are different ways to classify the architecture of parallel 
computing systems. The first common classification in the literature was proposed by M. 
Flynn in the late 60s of the last century. Its classification is based on two different 
stream concepts: data and commands. Here it is proposed to classify the architecture into 
four classes according to the number of flows. 

1. SISD (Single Instruction Single Data) - it is a single-instruction machine 
architecture that operates with a single thread, that is, a single instruction that executes a 
single flow. The classic von Neumann machine belongs to this architecture. 

SIMD (Single Instruction, Multiple Data) is a computer computation principle that 
allows parallelism at the data level. SIMD computers are composed of one command 
processor (control module) called a controller and several data processing modules 
called processing elements. The control module receives, analyzes and executes 
commands. If the command contains data, the controller sends the command to all 
processing elements, and this command is executed on some or all of the processing 
elements. 

3. MISD (Multiple Instruction, Simple Data) is a parallel computing architecture 
in which two or more functional modules perform different operations on the same data. 
Many researchers refer to this class of conveyor computers. 

4. MIMD (Multiple Instruction, Multiple Data) is a computer architecture in 
which several independent processors work as part of a larger system. Processing is 
divided into several streams, each of which has its own processor setup, in a single 
software-defined process or in multiple processes. At present, all modern 
supercomputers can be included in this class. The structure of this class is shown in 
Figure 2.1. 
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Figure 2.1  MIMD structure 

 
A MIMD computer has n processors, n command streams, and t data streams. 

Each processor works with its own command flow. 
The machines have several processors that work asynchronously and 

independently. At any given time, different processors can execute different instructions 
on different pieces of data. The MIMD architecture can be used in a variety of 
applications, such as CAD / CAM, modeling, and communication connectors. 

The MIMD class is very broad and combines many different types of architecture 
along with many computers. 

MIMD systems can be divided into two subclasses: shared memory systems and 
distributed memory systems. For the first type of system, it is typical for any processor 
to have direct access to any of these common RAM slots. Allocated memory systems are 
usually a set of computer nodes. A node is understood as a stand-alone processor with 
independent RAM. In these systems, no processor can voluntarily access the memory of 
another processor. 
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Amdahl's Law 

In the theory of parallel computing, there are some fundamental laws that limit the 
results of parallelization. One such law is Amdahl's law proposed by Gene Amdahl in 
1967. This law provides for the acceleration of one program in n processors based on the 
prediction of the linear acceleration of the parallel part. For instance, any parallel 
program consists of a non-parallelizable serial part and a parallel part, if we denote the 
parallel part by Þ, then the serial part is 1 − Þ. In this case, the maximum acceleration of 
parallelism in & processor è(&) is as follows 

 è(&) = 1(1 − Þ) + Þ/& 

 
As n increases, the speedup becomes 1/(1 − Þ). 
Acceleration is limited by the total computing time of the serial part of the 

program. For 10-hour calculations, if the 8-hour calculations are parallelizable and the 2-
hour calculations are non-parallelizable, then the maximum acceleration does not exceed 
5 times. 

 
Gustafson's law 

Amdal's approach focuses on a constant-dimensional calculation because it deals 
with a code that takes a constant amount of sequential calculation time. 

John Gustafson, a researcher at NASA Ames Research, takes a different view: 
mass parallel machines allow for calculations that have not been performed before 
because they allow calculations to be performed on a very large set of data over a period 
of time. In other words, the parallel platform not only speeds up the execution of the 
code: it allows you to solve large problems. Thus, he concluded that the increase in the 
total volume of the program was mainly due to the parallel part. Therefore, it is 
concluded that the acceleration can be increased, as its own share is small when the 
chain part of the total volume of the enlarged program remains unchanged. 

Gustafson's law can be formulated as follows: 
 è (&)  =  1 −  Þ +  Þ& 
where: 
 è - theoretical acceleration of fulfillment of all tasks; Þ - share of parallel calculations; respectively, 1 − Þ - share of serial calculations.  
Gustafson's law amended the limits of Amdal's law for fixed-volume calculations, 

which do not change with the improvement of resources. Gustafson's law shows that 
programmers tend to choose the amount of computations that make full use of the 
resources of advanced resources - the faster the hardware, the greater the computational 
volume, while maintaining the same execution time. 
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According to Gustafson's law, efficiency rises to a new level, as the large volume 
of the problem, which is often solved, allows to increase the volume of parallel 
calculations. 

The purpose of optimization using Amdal's law is to ensure the rapid operation of 
the program with a constant workload, and Gustafson's law - to perform a complex 
program without increasing the total execution time. This is the main difference between 
the two laws. 

 
2.2 MPI PARALLEL IMPLEMENT OF 2 WAVE EQUATION WITH A 

DISTRIBUTIONAL COEFFICIENT  
 
In this section we will discuss the numerical solution of the two-dimensional wave 

equation with a distributional coefficient by the implicit difference method. The 
approximation of the solution function is calculated at discrete points in the spatial grid, 
based on discrete time steps. The initial values are given by the initial value condition. 
First we will explain how to transform a differential equation into a finite-difference 
equation, respectively, a set of finite-difference equations that can be used to calculate 
an approximate solution. Then we will change this algorithm to parallelize this task on 
several processors. Special focus is on improving the performance of the parallel 
algorithm on different hardware platforms. In addition, we will run the implemented 
algorithm on a cluster and calculate the acceleration based on the execution time from 1 
to 60 processors.  

 2.2.1 Introduction 
The application of high-performance parallel computing in mathematical 

modeling opens up new possibilities for studying physical processes in longer time and 
more extensive spatial domains. Currently, various high-performance parallel computing 
is used in many areas. One of such applications is acoustics. One of the most important 
tasks of acoustics is the problem of wave field modeling. 

There is a large amount of work devoted to numerical methods developed for the 
study of wave processes in recent decades. It includes a finite-difference method [25], a 
finite-volume method [22], a finite-element method [26], a two-level compact ADI 
method [29], an implicit Finite Difference Time Domain Methods [21], a boundary 
[integral] element method [29], and spectral methods [39]. A completely non-linear 
model must be applied to many problems. Most models have been developed for 
technical applications. These numerical methods provide some of the most natural 
methods for modeling the propagation and scattering of underlying waves in 
electromagnetic, acoustic and elastic studies. However, as indicated in [28], the 
aforementioned methods have several disadvantages if the second-order equations are 
converted to first-order systems before discretization, especially in the presence of 
several spatial dimensions. Therefore, recently, much attention has been paid to the 
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development of efficient finite-difference methods that directly discretize second-order 
differential equations [23, 24]. 

The two-dimensional approach (as a conformal method) considers a highly 
idealized wave field, since even monochromatic waves in the presence of side 
perturbations quickly acquire a two-dimensional structure. The difficulties encountered 
are not a direct result of the increase in size. The main complication is that the problem 
cannot be reduced to a two-dimensional problem, and even for the case of a two-
periodic wave field, the problem of solving the Laplace-type equation for the velocity 
potential arises. Most models designed to study the three-dimensional dynamics of 
waves are based on simplified equations, such as second-order perturbation methods, in 
which higher-order terms are ignored. In general, it is unclear what effects are missing in 
such simplified models. Our current work is motivated by recent interest in the 
development and application of high-order compact difference methods for solving 
partial differential equations. Obviously, higher-order compact difference schemes have 
better resolution on stencils with a compact grid compared to non-compact or low-level 
methods [19, 30]. 

For multidimensional problems, the efficiency of an implicit compact difference 
scheme depends on the computational efficiency of the corresponding matrix solvers. 
From this point of view, the ADI method [40] is promising because they can decompose 
a multidimensional problem into a series of one-dimensional problems. It has been 
shown that schemes acquired are unconditionally stable. 

For the proper assignment of large domains of modeling, two- or three-
dimensional computational grids with a sufficient number of nodes are used. 
Calculations on such grids require more CPU time and computer memory resources. To 
accelerate the computation process, MPI technology was used in this paper, which 
allows the program to operate on larger grids[84, 85]. 

Here we consider some issues in the numerical simulation of some problems in 
the propagation of waves in acoustic on high performance computing systems. 

 
2.2.2  Wave equation: theoretical part 
We consider two-dimensional wave equation with a distributional coefficient  

 
	�)��� − m(') ���)��� + ��)���� = 0, (', #, $) ∈ >0; K? × >0; t? × >0; t?, (2.1) 

 subject to the initial conditions  
 .(0, #, $) = .M(#, $), #, $ ∈ >0, t?, (2.2) 
  

 
�)(M,�,�)�� = 0, #, $ ∈ >0, t?, (2.3) 

 and boundary conditions  
 .(', #, 0) = 0, .(', #, t) = 0, ' ∈ >0, K?, # ∈ >0, t?, (2.4) 
  
 .(', 0, $) = 0, .(', t, $) = 0, ' ∈ >0, K?, $ ∈ >0, t?, (2.5) 



45 

 

 
As it was theoretically outlined in [6, 7, 18] (also, see [31, 32, 33]), we start to 

analyse our problem by regularising distribution function m(') by a parameter U, that is, 
we get  

 mO('): = (m ∗ �O)('), 
as the convolution with the mollifier  
 �O(') = 1U �('/U), 
with  

�(') = D1̄ §I/(���I), |'| ≤ 1,0, |'| > 1,  

 where ¯ ≃ 0.443994 to obtain Y  �(')T' = 1.IbI  
Hereinafter, we assume that t = 10. Then, instead of (2.1) we consider the 

regularised equation  	��� .O(', #, $) − mO(')0	��� + 	��� 1.O(', #, $) = 0, (', #, $) ∈ >0, K? × >0,10? ×>0,10?.                                                                                                                                                                 (2.6)                                                                                          
 Here, we put  

 .M(#, $) = å§I/((�bé)��(�bé)�bM.é), (# − 5)� + ($ − 5)� − 0.5 < 0,0, (# − 5)� + ($ − 5)� − 0.5 ≥ 0. (2.7) 

 
We note that |.ÞÞ .M ⊂ >4.5,5.5? × >4.5,5.5?. 
 
Numerical experiments 

  
We introduce a space-time grid with steps ℎI, ℎ�, �respectively, in the variables #, $, ':  ���,��� = {#N = SℎI, S = 0,  ; $G = iℎ�, i = 0,  ; '� = s�, s = 0,1,2 … K/'m.}(2.8) 
 and on this grid we will approximate the differential problem (2.6) with the 

conditions (2.2)–(2.5) using the finite difference method. 
 
2.2.3  Alternating direction implicit (ADI) method 
 The ADI (Alternating Direction Implicit) method is a finite difference scheme 

and has long been used to solve partial differential equations (PDEs) in higher 
dimensions. Originally it was introduced by Peaceman and Rachford [37], but many 
variants have been invented throughout the years [38, 39, 40]. The ADI method uses 
only implicit finite difference operators, which makes it absolutely stable in problems 
that do not contain mixed derivatives. It has a fairly significant stability margin in 
problems with mixed derivatives. For the problem (2.2)–(2.6) the ADI method has the 
form  
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)�,J���/�b�)�,J� �)�,J���/�

�� − m��I/� })���,J���/�b�)�,J���/��)���,J���/�
��� � = 0,  (2.9) 

  

 
)�,J���b�)�,J���/��)�,J�

�� − m��I B)�,J����� b�)�,J����)�,J�����
��� C = 0.  (2.10) 

Using the implicit subscheme (2.9), the Thomas method is performed in the x 

direction, with the result that we get the grid function .N,G��I/�. In the second fractional 
time step, using the subscheme (2.10), the Thomas method is performed in the direction 
of the y axis, with the result that we get the grid function .N,G��I. The ADI method has the 
order ¢(�� + ℎ�). In the following, we demonstrate numerical simulations. All 
calculations are made in C++ by using the Thomas method. For all simulations 'm. =0.05, ℎI = ℎ� = 0.1. In all visualization of result, we use Matlab R2018b. 

     
Figure  2.2  In the left plot the graphic of the initial function .M is given. The 

solution of the problem .O at ' = 5 
 
2.2.4  Parallel Algorithm 
On the basis of these methods we wrote the code of parallel modeling for the two-

dimensional wave equation with distribution coefficient. The overlapping is based on the 
way divisions of domains and keeps the implicit nature of the scheme. It corresponds to 
a completely implicit interpretation of Yanenko [35]. Each processor processes one 
subdomain. On each temporary step all processors update the internal knots (in parallel), 
and then exchange the interface knots with the neighbors. Unlike methods of 
decomposition of areas for elliptic tasks, our procedure is algebraically equivalent to 
consecutive. Our strategy leads naturally to a message passing implementation. We have 
chosen to use MPI in order to evaluate its ease of use and expressiveness, and also to 
benefit from its portability. In accordance with the data decomposition format, Fig 2 
shows the pure MPI parallelization which is designed on the basis of a sequential 
algorithm by using peer-to-peer mode and standard communication mode[41]. In 
another word, the parallel program is executed on a multiprocessor cluster by creating 
one MPI process for each CPU on the system, and each process deals with different data 
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obtained from the matrix. In this case all process interactions will happen via message-
passing. 

The message passing interface (MPI) is a standardized and portable programming 
interface for exchanging messages between multiple processors executing a parallel 
program in distributed memory. MPI works well on a wide variety of distributed storage 
architectures and is ideal for individual computers and clusters. However, MPI depends 
on explicit communication between parallel processes which requires mesh 
decomposition in advance due to data decomposition. 

Therefore, MPI can cause load balancing and consume extra time. Our 
implementation uses MPICH2 because it is a freely accessible, compact implementation 
of MPI, a standard for message-passing for distributed-memory applications used in 
parallel computing[17]. MPICH is Free Software and is available for most flavors of 
UNIX and Microsoft Windows. MPI is standardized on many levels therefore it 
provides advantage for the user. For example you will be sure that your MPI code is 
executed in any MPI implementation launching on your architecture, even if the syntax 
has been standardized. Because the functional behavior of MPI calls is also 
standardized, your MPI calls should behave the same whatever of implementation, 
which ensures portability of your parallel programs 

 

 
Figure  2.3  Parallel model of MPI  
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   To parallelize the problem (2.2)–(2.6) we apply the method proposed by N.N. 
Yanenko with coauthors [35]. The parallel algorithm is given in algorithm 1and the 
YanekoMethod (*a, *b, *c, *f, *y, n) function code in github [83]. 

 
Yanenko method 

 The Yanenko method can be applied not only to solve a set of systems of three-
point equations, but also to solve a single system (introduced by A.A. Fedorov and A.N. 
Bykov in [42]). Consider a system of linear equations with a three-diagonal matrix of 
the following form: 

 mN$NbI + °N$N + ¯N$N�I = +N , °N ≠ 0, S = 1,2, …  − 1, °M$M + ¯M$I =+M, m�$�bI + °�$� = +�                                                                                     (2.11) 
 For simplicity, let each processor have the same number of points l = ë/�, 

where K is the number of unknowns (in our case, ë =  + 1), M is the number of 
processors, the indexing will be global. Thus, on a separate processor with number j 
there will be only a part of the equations of system (2.11) with numbers from (i − 1) ∗l + 1 to i ∗ l, where i is the number of the processor. Denote $G∗É by ìG, i = 0, … , � 
and look for solutions of system (4.1) in the form  

 $(GbI)∗É�N = ìGbI.N + ìGíN + îN , S = 1, … l − 1, i = 1, … � (2.12) 
 where ., í, î are solutions of the following systems of equations:   mS.S−1 + °S.S + ¯S.S+1 = 0, .(i−1)∗l = 1, .i∗l = 0;   mSíS−1 + °SíS + ¯SíS+1 =0, S = (i − 1) ∗ l + 1, … i ∗ l − 1, í(i−1)∗l = 0, íi∗l = 1; i = 1, … �  mSîS−1 + °SîS +¯SîS+1 = +S, î(i−1)∗l = 0, îi∗l = 0;                                                                   (2.13) 
 Solutions of these three systems can be found by the Thomas method, and 

independently on each processor. We will call them prejudices, and this stage of solving 
the problem - the stage of finding prejudices. 

In the equations with the numbers i ∗ l from the system (2.11):  
 mG∗É$G∗ÉbI + °G∗É$G∗É + Ḡ∗É$G∗É�I = +G∗É, i = 0, … �, substitute the $ 

combination (2.12). Thus, we obtain a system of three-point equations for finding ìG, 
which has the following form:   Ëiìi−1 + ïiìi + Viìi+1 = �i, i = 1, … � − 1, ï0ì0 + V0ì1 = �0, Ë�ì�−1 +ï�ì� = ��                                                                                                            (2.14) 

 with coefficients: 
 ïM = °M + ¯M.I, VM = ¯MíI, �M = +M − ¯MîI, ËG = mG∗É.G∗ÉbI, 
 ïG = mG∗ÉíG∗ÉbI + °G∗É + Ḡ∗É.G∗É�I, VG = Ḡ∗ÉíG∗É�I, 
 �G = +G∗É − mG∗ÉîG∗ÉbI − Ḡ∗ÉîG∗É�I, i = 1, … � − 1, 
 Ë
 = m
∗É.
∗ÉbI, ï
 = °
∗É + m
∗Éí
∗ÉbI, �
 = +
∗É −m
∗Éî
∗ÉbI. 
 Let’s call this stage - the stage of finding the boundary-processor solutions. The 

dimension of this system of equations is equal to the number of processors, which is 
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significantly less than the number of problem points. At the last stage, we restore the 
final decision using formula (2.12). So, the method of Yanenko contains three stages: 

 1) finding prejudices, 
 2) finding the boundary-processor solutions, 
 3) restore solution. 
 The first and third stages are performed independently on each device (universal 

processor, accelerator or coprocessor). And the second stage requires communication 
between MPI processes. Thus, the efficiency of the parallelization of the Yanenko 
method directly depends on the efficiency of the parallelization of this stage. 

 Parallel algorithm 

 
 
2.2.5  Experimental Results 
 All calculations and tests were carried out on a personal computer core i7 8th 

generation RAM 8GB and on a 60 core cluster consisting of 5 nodes, connected by a 
high-speed InfiniBand HCA 40Gb/s, QDR bus. Each node contains two Intel Xeon E5-
2620v2 6C/12T 2.10GHz 15MB processors and 8 GB of RAM. We used the personal 
computer for sequential calculations and visualizing results in Matlab programs. The 
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performance of a parallel algorithm is determined by calculating its speedup. Strong 
scaling speedup is defined as the ratio of the best-case execution time of the sequential 
algorithm for a particular problem to the worst-case execution time of the parallel 
algorithm. 

 è = �ð�ñ ; 
where KÈ is the computational time for running the program using one processor, Kò is the computational time running the same program with Þ processors. The 

efficiency is defined as the ratio of speedup to the number of processors. Efficiency 
measures the fraction of time for which a processor is usefully utilized.  

 ^ = óò = �ðò�ñ ; 
where è is the speedup, Þ is the number of processors. The test results are 

presented in Figure 2.4. 

 
Figure  2.4 Speedup and Programs efficiency (%) 
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   The small cluster that we launched the tasks consists of 5 nodes, and each node 

consists of 12 physical cores. These two figures from the calculation results, shows that 
the number of cores up to 10 the speedup and efficiency improves significantly, since 
the number of cores exceeds 10 speedup slowly rises and while the efficiency decreases, 
as the grid size increases, for example N = 3000 and N = 6000, the efficiency is 
significantly reduced, because the time spent on exchanging information between the 
cores is quite large that the InfiniBand cable throughput for transmitting information 
between supercomputers is lower than that of the motherboard information bus whom, 
therefore, the effectiveness is reduced. Namely the method proposed by Yanenko to 
parallelize the Thomas algorithm would be effective only if the exchange of data 
between the cores is very high. 

 We have implemented a parallel solver for the 2D wave equation with a 
distributional coefficient, using the MPI standard. 

 The implementation of the parallelization method of the Thomas algorithm for 
solving the wave equation arising in the simulation of two-dimensional physical 
processes on supercomputers has been implemented. The test results show that the 
method of Yanenko is much more effective on individual nodes than a several nodes. 
This means that this method is more effective on personal computers than a cluster this 
is because it takes a lot of time to exchange data between nodes. 

 In the future, it is planned to try to apply the method of parallel-cyclic reduction 
at the second stage of the Yanenko method, to investigate the possibility of increasing 
the parallelization efficiency, and to use vectorization in order to increase the 
acceleration from using coprocessors. 

 
2.3 GPU computing for time depending 2D tsunami wave equation 

 
In this section, we present the numerical implementations of the 2D tsunami wave 

equation. We considered a simulation of tsunami wave propagation in the shallow water 
area of the coast that was generated by an underwater earthquake using an implicit finite 
difference scheme. A parallelization algorithm on GPU is given. We carry out a special 
focus on improving the performance of the parallel algorithms. It is observed that the 
codes running on the CUDA platform give expected results. By comparing our tests on 
the GPU to those obtained by running the serial code of the same simulation on the 
CPU, GPU simulations are found to run quite faster than ones run on the CPU.  

The tsunami wave equation is one of the fundamental equations in many 
engineering and physical science problems. In this paper we consider numerical 
simulations of the Cauchy problem for the two-dimensional tsunami equation  	�)��� − y ��� �*(', #, $) �)��� + ��� �*(', #, $) �)���z + ��,��� = +(', #, $),   (', #, $) ∈(0, K) × �, (2.15) 
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where � = (0, @) × (0, ×) for some fixed @, × > 0. The initial values are given by 
the initial value condition  

 .(0, #, $) = �(#, $),   �)�� (0, #, $) = :(#, $),   (#, $) ∈ �, (2.16) 

 where � = (0, @) × (0, ×). Since the domain � is bounded we require some 
conditions on its boundary, for example, the Dirichlet boundary condition  

 .(', #, $)|�ô = �(', #, $),   ' ∈ >0, K?. (2.17) 
 where H(t,x, y) is the still-water depth (typically obtained from an electronic 

map). The t-dependence in H gives a moving bottom to model, such as an underwater 
slide or earthquake. In this work, we consider the more smooth singularity case as 
shown below *(', #, $) = *M(#, $) + õ(')*I(#, $)  

this means a specific place of water bottom go up during a period of time 'M and 'I  

 *M(#, $) = D0.5#,   0 ≤ # < 2010 + 2.25(# − 20),   20 ≤ # < 60100,   60 ≤ # < 100  (2.18) 

 

 *I(#, $) = á−10,   61 ≤ # < 71,45 ≤ $ < 75,0,   §t|§  (2.19) 

 
 here õ(') = |õ2(') − õ1(')|  
 õI(') = {m,   ' ≥ 'M, 0,   §t|§  (2.20) 
  
 õ�(') = {m,   ' < 'I, 0,   §t|§  (2.21) 
 in our case *�� ≈ ö(')*I(#, $) where ö(') = ö1U′ (') − ö2U′ (') 
 

 ö1O÷ (') = D �(�b�¥)O�((�b�¥)�bO�))� exp( O�(�b�¥)�bO�),   'M − U < ' < 'M + U,0,   in other cases  (2.22) 

 
 

 ö2O÷ (') = D �(�b��)O�((�b��)�bO�))� exp( O�(�b��)�bO�),   'I − U < ' < 'I + U,0,   in other cases  (2.23) 
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Figure  2.5 *M(#, $)-water bottom and *I(#, $) - place where earthquakes take 

place 
   
In this work we are interested in the singular cases of the function ℎ, source term +, initial functions � and :. To deal with the theoretical part, Ruzhansky and his co-

authors introduced so-called "very weak solutions" in [4, 6, 31, 32]. 
Here, we offer a finite-difference equation to calculate an approximate solution of 

the boundary value problem (2.15)–(2.17). It is a subject to parallelize on GPU the 
standard algorithms on CPU. Special focus is on improving the performance of parallel 
computing. In addition, we run the implemented parallel code on the GPU and serial 
codes on the central processor to calculate the acceleration based on the execution time. 
We find out that the parallel code that runs on the GPU gives the expected results by 
comparing our results to those obtained by running the serial code of the same 
simulation on the CPU. 

 
2.3.1 Preliminaries 
 We introduce space-time grids with steps �, ℎ1, ℎ2 in the variables ', #, $, 

respectively, that are  ���,���  = {('�, #N , $G): '� = s�; #N = SℎI; $G = iℎ�,   (s, S, i) ∈ �}, ���,���  ={('� , #N , $G): '� = s�; #N = SℎI; $G = iℎ�,   (s, S, i) ∈ �},  (2.24) 
 where  
 �: = {(s, S, i) ∈ ���: 0 < s ≤ �; 0 < S <  I; 0 < i <  �}, 
 
 �: = {(s, S, i) ∈ ���: 0 ≤ s ≤ �; 0 ≤ S ≤  I; 0 ≤ i ≤  �}, 
and  
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 @ = ℎI I, × = ℎ� �, K = ��. 
One calculates an approximate solution from discrete points in the time-spatial 

grid ���,��� . On this grid we approximate the problem (2.15)–(2.17) using the finite 
difference method. For simplicity, we put  : =  I =  � and denote ℎ: = ℎI = ℎ�. 
Consider the Crank-Nicolson scheme for the problem (2.15)–(2.17). First we transform 
the partial differential equation (2.15) into the implicit finite-difference equation  

 .S,is+1−2.S,is +.S,is−1�2 − *S,is
4ℎ2 ((.S+1,is+1 − 2.S,is+1 + .S−1,is+1 + .S+1,is−1 − 2.S,is−1 + .S−1,is−1 )   +

(.S,i+1s+1 − 2.S,is+1 + .S,i−1s+1 + .S,i+1s−1 − 2.S,is−1 + .S,i−1s−1 ))   + (*S+1,is −*S,isℎ )(.S+1,is −.S,isℎ ) +(*S,i+1s −*S,isℎ )(.S,i+1s −.S,isℎ ) = +S,is   (2.25) 

 for (s, S, i) ∈ ���,��� , where ℎN,G� : = ℎ(Sℎ, iℎ),   +N,G� : = +(s�, Sℎ, iℎ) with initial 
conditions  

 .N,GM = �N,G ,   .N,GI − .N,GM = ��N,G ,  (2.26) 
 for (S, i) ∈ 0,  × 0,  , and with boundary conditions  

 .M,G� = 0,   .�,G� = 0,   .N,M� = 0,   .N,�� = 0,     (2.27) 
 for (i, s) ∈ 0,  × 0, � and (S, s) ∈ 0,  × 0, �, respectively. 
It is well-known, that the implicit scheme (2.25)–(2.27) is unconditionally stable 

and it has accuracy order ¢(� + |ℎ|�), see, for example [16]. 
We solve the difference equation (2.25) by the alternating direction implicit (ADI) 

method, namely, dividing it into two sub problems  

 .S,is+1/2−2.S,is +.S,is−1/2
�2 − *S,i4ℎ2 ((.S+1,is+1/2 − 2.S,is+1/2 + .S−1,is+1/2)   + (.S+1,is−1/2 − 2.S,is−1/2 +

.S−1,is−1/2)) − (*S+1,i−ℎS,iℎ )(.S+1,is−1/2−.S−1,is−1/2
2ℎ ) = +S,is−1/2

2 ,  (2.28) 

 and  

 .S,is+1−2.S,is+1/2+.S,is
�2 − *S,i4ℎ2 ((.S,i+1s+1 − 2.S,is+1 + .S,i−1s+1 )   + (.S,i+1s − 2.S,is + .S,i−1s )) −

(*S,i+1−*S,iℎ )(.S,i+1s −.S,i−1s2ℎ ) = +S,is
2 .  (2.29) 

 
Now, the equation (2.15) can be solved by the ADI method in two sub-steps. At 

the first sub-step, we solve the equation (2.28) in # direction:  

 ËøN.N�I,G��I/� + ïoN.N,G��I/� + VøN.NbI,G��I/� = �oN ,  (2.30) 

 where ËøN = −��ℎN,G, ïoN = 2��ℎN,G + 4ℎ�, VøN = −��ℎN,G and �oN = −8ℎ�.N,G� +(4ℎ� + 2��ℎN,G).N,G�bI/� − ℎN,G��(.N�I,G�bI/� + .NbI,G�bI/�) − 2ℎ��(.N�I,G�bI/� + .NbI,G�bI/�)(ℎN�I,G −ℎN,G)/ℎ + 2ℎ���+N,G�bI/�. 
As the second sub-step, we solve the equation (2.29) in $ direction:  
 ËøG.N,G�I��I + ïoG.N,G��I + VøG.N,GbI��I = �oG ,  (2.31) 
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 where ËøG = −��ℎN,G, ïoG = 2��ℎN,G + 4ℎ�, VøG = −��ℎN,G and �oG = −8ℎ�.N,G��I/� +(4ℎ� + 2��ℎN,G).N,G� − ℎN,G��(.N�I,G� + .NbI,G� ) − 2ℎ��(.N�I,G� + .NbI,G� )(ℎN�I,G −ℎN,G)/ℎ + 2ℎ���+N,G� . 
Indeed, each of the equations (2.30) and (2.31) can be written in the matrix form >Ë?w = + as follows 
 

 

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡°I ¯I 0 ⋯ ⋯ ⋯ 0mI °� ⋱ ⋱ ⋮0 m� ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ¯�b� 0⋮ ⋱ °�bI ¯�bI0 ⋯ ⋯ ⋯ 0 m�bI °� ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤

×
⎝
⎜⎜
⎜⎛

.I.�⋮⋮⋮⋮.�⎠
⎟⎟
⎟⎞ =

⎝
⎜⎜
⎜⎛

+I+�⋮⋮⋮⋮+�⎠
⎟⎟
⎟⎞

 

 Here, this system can be further simplified and solved easily. However, the 
coefficients may vary at each time step for more complex applications. From a 
parallelization solver point of view, we will keep the notations of the original system for 
generality. 

 
          2.3.2 High-performance parallel computing 

Already for several years, GPUs have been used to accelerate well parallelizable 
computing, only with the advent of a new generation of GPUs with multicore 
architecture, this direction began to give tangible results. The goal of this work is to 
develop a parallel implementation of the finite difference method for solving two-
dimensional wave equations on a graphics processor using CUDA technology and to 
study the efficiency of parallelization by comparing the time of solving two-dimensional 
wave equations on a GPU and a central processor. 

The graphics processing unit (GPU) is a highly parallel, multi-threaded, and 
multi-core processor with enormous processing power. Its low cost and high bandwidth 
floating point operations and memory access bandwidth are attracting more and more 
high performance computing researchers [44]. In addition, compared to cluster systems, 
which consist of several processors, computing on a GPU is inexpensive and requires 
low power consumption with equivalent performance. In many disciplines of science 
and technology, users were able to increase productivity by several orders of magnitude 
using graphics processors [45, 46, 86]. 

GPU programming on NVIDIA graphics cards has become significantly easier 
with the introduction at the end of 2006 of the CUDA programming language (NVIDIA 
Corporation 2009a), which is relatively easy to learn because its syntax is similar to C. 
With GPU becoming a viable alternative to CPU for parallel computing, aforementioned 
parallel tridiagonal solvers and other hybrid methods have been implemented on GPUs 
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[47] – [54]. Zhang et al. [47] first implemented parallel cyclic reduction (PCR) and then 
proposed a CR-PCR hybrid algorithm. A hybrid PCR-Thomas method was proposed by 
Sakharnykh [53], and it was also studied by Zhang et al. [47]. There are many examples 
in the literature of successfully using GPUs for wave propagation simulation [55] – [60]. 

 
         Cyclic reduction method (CR) 

Besides the Thomas method, other methods are also used to solve the system of 
linear algebraic equation (SLAE) of the tridiagonal matrix, which in practice is often 
more efficient. One of these methods is the cyclic reduction method. The main limitation 
of this method is that it works only in cases where the matrix has a dimension equal to 
the degree of two. Cyclic reduction method was invented by W. Hockney in 1965 [61] 
and the CR method consists of two steps: forward reduction and backward substitution. 
The forward reduction step sequentially eliminates the odd-indexed unknowns and then 
unknowns are reordered and the process is continued until one equation with one 
unknown is left. The backward substitution step solves the remaining one equation and 
finds the unknown y, consequently finds all unknowns from the previous steps. Each 
step consists of tQ��& − 1 sub-steps where & is the system size. In each step of forward 
reduction, we update all even-indexed equations with equation S of the current system as 
a linear combination of equations S, S + 1 and S − 1, so that we derive a system of only 
even-indexed unknowns. Equation S has the form mN$NbI + °N$N + ¯N$N�I = +N. The 
updated values of mN , °N , ¯N and +N are  mN÷ = −mNbIâI; °N÷ = °N − ¯NbIâI − mN�Iâ� ¯N÷ = −¯N�Iâ�; +N÷ = +N − +NbIâI −+N�Iâ� âI = Æ�Ç��� ; â� = 
�Ç���                                                                                  (2.32) 

 In each step of backward substitution, we solve all odd-indexed unknowns $N  in 
parallel by substituting the already solved $NbI and $N�I values to equation S, 

  

 $N = ¤��bÆ������b
������Ç��   (2.33) 

Figure 2.6 shows the communication pattern of the algorithm for an 8-unknown 
system.  
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Figure  2.6  Communication pattern for CR in the 8-unknown case, showing the 

dataflow between each equation, labeled $1 to $8. Letters $÷ and $÷÷ stand for updated 
equation [47]. 

    
There are: 
 Step 1: forward reduction reduced to a 4 unknown system 
 Step 2: forward reduction reduced to a 2 unknown system 
 Step 3: solve 2 unknown system  
 Step 4: backward Substitution solves the remaining 2-unknowns 
 Step 5: backward Substitution solves the remaining 4-unknowns 
 

The algorithm of the Cyclic reduction method is given below: 
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Figure  2.7 Sequential algorithm 

 
Using the implicit subscheme (2.28), the cyclic reduction method is performed in 

the # direction, with the result that we get the grid function .N,G��I/�. In the second 
fractional time step, using the subscheme (2.29), the Cyclic reduction method is 
performed in the direction of the $ axis, with the result that we get the grid function .N,G��I. The Cyclic reduction algorithm has the order ¢(� + ℎ�), i.e. the first order in time 
and the second in # and $ variables. In the following, we demonstrate numerical 
simulations. All calculations are made in C++ by using the Cyclic reduction algorithm. 
For all simulations �' = 0.05, �# = �$ = 0.5. In all visualization of result, we use 
Matlab R2018b. 

For simulation we use initial condition:  
 w(#, $, 0) = 0 w�(#, $, 0) = 0 and dirichlet boundary conditions. Some results are illustrated in 

Fig.2.8.  
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Figure  2.8 The water bottom and displacement of the wave at different times 

 
Figure  2.9 Changes in wave height over time 
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Numerical Accuracy Analysis 

  
The numerical solution requires a certain level of numerical accuracy. We check 

the accuracy of we used the finite-difference scheme using absolute error and norm error g� which is defined as  
 §RRÆÇÈ = ||. − .�)É||  (2.34) 
 
 g� = Ê∑ (. − .�)É)��#�$�NHI    (2.35) 
 where u denotes the exact value and .Æ denotes the approximation. 
We adopt the unit square (#, $) ∈ >0,1? × >0,1? as the spatial solution domain 

with 100 elements per each side and 100 interior points, *(', #, $) = 1, with initial 

condition .(#, $, 0) = |S&(2Î#)|S&(2Î$), 
�)(�,�,M)�� = 0 and .(0, $, ') = .(1, $, ') =.(#, 0, ') = .($, 1, ') = 0 on the boundaries. The analytical solution of equation (2.15) 

is as flows: .(#, $, ') = ¯Q|(2Î√2')|S&(2Î#)|S&(2Î$). 
 

 
                      a)                    b)                    c)   
Figure  2.10  Solution for time ' = 1, �# = �$ = 0.01, �' = 0.001 a) exact, b) 

numerical, c) absolute error 
 
2.3.3 Implementation on graphics cards using CUDA 
Nowadays Graphics Processing Units(GPUs) or graphics processors have evolved 

from fixed-function processors specialized for three-dimensional graphics operations to 
a fully programmable computing platform for a wide variety of computationally 
demanding applications. Modern GPUs are massively data-parallel throughput-oriented 
many-core processors capable of providing TFLOPS of computing performance and 
quite high memory bandwidth compared to a high performance CPU. On the other hand, 
owing to their peculiar and particular architecture, developing an efficient algorithm that 
gives the high performance from the GPU, is a difficult task. Traditional algorithms 
developed for scalar architectures (e.g. CPU) do not translate naturally to parallel 
architectures (e.g. GPU)[62]. In this paper, we present an efficient parallel algorithm 
based on the CR method for numerically solving the 2D wave equation on the GPU. 
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GPU architecture 

 Latest NVIDIA’s computing architecture such as NVIDIA GeForce RTX 2080Ti 
(Turing TU102 architecture [65]) which is used in this work is the powerful Turing 
architecture, innovative technology and 11 GB of next-generation ultra-fast memory 
GDDR6 make it the world’s best graphics card, as illustrated in Fig.2.11. The GPU 
architecture consists of numerous cores called streaming processors (SPs), that are 
grouped in a set of streaming multiprocessors (SMs). Every SM processes instructions in 
a single-instruction multiple-threads (SIMT) mode and supports a multithreading 
execution mechanism. The threads in groups of 32 parallel threads called warp are 
created, managed, scheduled and executed by the SM. The instruction (fetch/decode), 
control and warp scheduling logic are shared across all the SPs on the SM. In an 
application a block represents a group of threads that can be executed serially or in 
parallel. During program execution, the hardware will appoint a whole block to one SM, 
although several blocks can execute in the same SM. When a SM executes one or more 
thread blocks, it divides them into warps and each warp will be scheduled by a warp 
scheduler for execution. one common instruction executed by a warp at the same time , 
that is why full efficiency is realized when all 32 threads of a warp agree on their 
execution path. 

 

 
Figure  2.11 Turing TU102 architecture 

 
  GPUs use areas of memory, such as global, local, constant, texture, shared, and 

registers. These areas of memory have different characteristics that reflect their different 
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uses in the application. Global, local, texture, and constant memory are located in 
DRAM (Dynamic Random Access Memory) with relatively large access latency[63].  

 
CUDA implementation 

 In 2007, NVIDIA introduced CUDA, an extension to C programming language, 
for general purpose computing on graphics processors. It is designed so that its 
constructions allow a natural expression of concurrency at the data level. A CUDA 
program consists of two parts: a sequential program running on the CPU, and a parallel 
part running on the GPU [63, 64]. The parallel part is called the kernel. A C program 
using CUDA extensions hand out a large number of copies of the kernel into available 
multiprocessors to be performed contemporaneously. The CUDA code consists of three 
computational steps: transferring data to the global GPU memory, running the CUDA 
core, and transferring the results from the GPU to the CPU memory. We have designed 
a CUDA program based on cyclic reduction method (2.32) and (2.33). The algorithm for 
solving the problem (2.15) is shown in Algorithm as bellow.  

Implementation of 2D tsunami wave equation 

 
 

Here, .0, .1, w#, w$ denote .N,G�bI/�, .N,G� , .N,G��I/�, .N,G��I respectively. The 

calculation formula of mN , °N , ¯N , +N is shown 2.30, like that mG , °G , Ḡ , +G is shown 2.31. The V�() function includes 3 device functions, namely, V��_+QRîmRT(), ¯R_TSí(), 
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and V��_°m¯sîmRT(), and one host function ¯mt¯_TSl() first we have to calculate the 
block size according to the size of matrix given by algorithm 2  and step number of 
forward and backward sub-steps for this we use one cycle 

 

 

 
Here tQ�2(& + 1) − 1 is step number and the variable |'§Þ .l is for identify 

how much block size we need therefore the function ¯mt¯_TSl() identified block size 
after that the V��_+QRîmRT() function runs tQ�2(& + 1) − 1 times consequently the 
system reduced one equation. After that we synchronize the device and will call the ¯R_TSí() function, this function calculate two unknowns, then we use again one cycle 

 
Here backward substitution runs tQ�2(& + 1) − 2 times because first backward 

substitution sub-step calculated by ¯mt¯_TSl() function thus we calculate T_# array 
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after that we will copy calculated data T� from device to host using 

  
 
2.3.4 Experimental results 
 Here we show the results obtained on a desktop computer with configuration 

4352 cores GeForce RTX 2080 TI, NVIDIA GPU together with a CPU Intel Core(TM) 
i7-9800X, 3.80 GHz, RAM 64Gb. Simulation parameters are configured as follows. 
Mesh size is uniform in both directions with �# = �$ = 0.5, and numerical time step �' 
is 0.05 s, and simulation time is T=5.0 s, therefore the total number of time steps is 100. 
To present more realistic data, we tested six cases with domain sizes of 256 ×256,512 × 512,1024 × 1024,2048 × 2048,4096 × 4096,8192 × 8192. 

 In Table 2.1 we report the execution times in seconds for serial (CPU time) and 
CUDA (GPU time) implementation of cyclic reduction method to the problem (2.15)-
(2.17).  

Table  2.1  Execution timing and speedup with the Intel Core(TM) i7-9800X, 
3.80GHz, NVIDIA RTX 2080 TI 

 Domain sizes  CPU time   GPU time 256 × 256 0.74 0.52 512 × 512 3.39 3.01 1024 × 1024 15.46 9.5 2048 × 2048 65.95 23.6 4096 × 4096 318.42 79.66 8192 × 8192 2856.32 347.48 

 
In this section, we have introduced a numerical solution of a two-dimensional 

tsunami wave equation based on an implicit finite difference scheme using the cyclic 
reduction method. We develop an approach parallelization of the cyclic reduction 
method on the graphic processing unit. And we showed how we accelerated the cyclic 
reduction method on the NVIDIA GPU. From the test results of table 2.3, it can be seen 
that the acceleration algorithm proposed by us gives a good result.  

 In future work, we would also like to use the OpenCL programming language 
instead of CUDA to make the code portable to non-NVIDIA hardware, including 
multicore systems. Other options to investigate could be the use of compiler directives, 
somewhat similar to the philosophy of OpenMP, or higher-level programming 
environments. 
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2.4 A PARALLEL HYBRID IMPLEMENTATION OF 2D ACOUSTIC 

WAVE EQUATION BASED ON IMPLICIT FINITE DIFFERENCE 

SCHEMES 

 

In this section, we propose a hybrid parallel programming approach for a 
numerical solution of a two-dimensional acoustic wave equation using an implicit 
difference scheme for a single computer. The calculations were carried out in an implicit 
finite difference scheme. First, we will transform the differential equation into an 
implicit finite-difference equation and then using the ADI method we split the equation 
to 2 sub-equations. Using the cyclic reduction algorithm we will calculate an 
approximate solution. Then we will change this algorithm to parallelize this on GPU, 
GPU+Open MP, and Hybrid (GPU+Open MP+MPI). The special focus is on improving 
the performance of the parallel algorithms to calculate the acceleration based on the 
execution time. We show that the code that runs on the hybrid approach gives the 
expected results by comparing our results to those obtained by running the same 
simulation on a classical processor core, CUDA, and CUDA+Open MP implementation. 

The reduction of computational time for long-term simulation of physical 
processes is a challenge and an important issue in the field of modern scientific 
computing. The cost of supercomputers, CPU clusters and hybrid clusters with a large 
number of GPUs are very expensive and they consume a lot of energy, which is 
inaccessible and ineffective to some small laboratories and individuals. 

Nowadays, new generation computers are multi-core, hybrid architecture and their 
computational power is also quite high. For example, the Intel Xeon E5-2697 v2 (2S-
E5) processors theoretically computing power about 19.56 GFLOPS, and, accordingly, 
the computational power of the NVIDIA TITAN Xp video card is about up to 379.7 
GFLOPS. If we use the computing power of the CPU and GPU together, we can show 
good results. 

The goal of this work is to develop a parallel hybrid implementation of the finite- 
difference method for solving two-dimensional wave equation using CUDA, CUDA + 
Open MP and CUDA + OpenMP + MPI technologies and studying the parallelization 
efficiency by comparing the time to solve this problem on the above various approaches. 
Already for several years, GPUs have been used to accelerate well parallelizable 
computing, only with the advent of a new generation of GPUs with multicore 
architecture, this direction began to give palpable results. 

For multidimensional problems, the efficiency of an implicit compact difference 
scheme depends on the computational efficiency of the corresponding matrix solvers. 
From this point of view, the ADI method [37] is promising because they can decompose 
a multidimensional problem into a series of one-dimensional problems. It has been 
shown that schemes acquired are unconditionally stable. For the proper assignment of 
large domains of modeling, two- or three-dimensional computational grids with a 
sufficient number of points are used. Calculations on such grids require more CPU time 
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and computer memory resources. To accelerate the computation process, GPU, Open 
MP, MPI technologies were used in this paper, which allows the program to operate on 
larger grids. With GPU becoming a viable alternative to CPU for parallel computing, 
aforementioned parallel tridiagonal solvers and other hybrid methods have been 
implemented on GPUs [47]-[54]. In this paper, we propose 3 different parallel 
programming approaches using hybrid CUDA, Open MP and MPI programming for 
personal computers. There are many examples in the literature of successfully using 
hybrid approaches for different simulations [66]-[71]. Here we consider some issues in 
the numerical simulation of some problems in the propagation of waves in acoustic on 
high performance computing systems. We consider 2d acoustic wave equation in 
homogeneous medium 	�.	'� − ¯� }	�.	#� + 	�.	$�� = +(#, $, '), 0', (#, $)1 ∈ >0; K? × >0; t?; (2.36) 

subject to the initial conditions .(0;  #, $) =   �I(#, $);  #;  $ ∈  >0;  t?;   (2.37)  	.(0, #, $)	' = ��(#, $);  #;  $ ∈  >0;  t?;   (2.38)  
and boundary conditions .(', #, 0) =  0, .(', #, t) =  0, ' ∈  >0, K?, # ∈  >0, t?; (2.39)  .(', 0, $) =  0, .(', t, $) =  0, ' ∈  >0, K?, $ ∈  >0, t?. (2.40)  
We introduce a space-time grid with steps ℎI, ℎ�, � respectively, in the variables x, 

y, t: �ℎ1ℎ2� = {#S =  Sℎ1, S =  0,  ; $i  =  iℎ2, i =  0,  ; 's  =  s�;  s = 0, �, �� =K}  (2.41) 
and on this grid we will approximate the differential problem (2.36) - (2.41) using 

the finite difference method. For problem (2.36) the ADI method has the form )�,J���/�b�)�,J� �)�,J���/�
�� − 
�Ù�� }.N�I,G���� − 2.N,G���� + .NbI,G���� + .N�I,G�b�� − 2.N,G�b�� + .NbI,G�b�� � =

+N,G�                                                                                                                                   (2.42)     

 
)�,J���b�)�,J���/��)�,J�

�� − 
�Ù 0.N,G�I��I − 2.N,G��I + .N,GbI��I + .N,G�I� − 2.N,G� + .N,GbI� 1 =
+N,G����                                                                                                                             (2.43)   

 
2.4.1 Hybrid parallel computing model 
High-performance computing uses parallel computing to achieve high levels of 

performance. In parallel computing, the program is divided into many subroutines, and 
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then they are all executed in parallel to calculate the required values. In this section, we 
will propose a hybrid parallel approach numerical solving a two-dimensional wave 
equation, for this, we use CUDA, MPI,  OpenMP technologies[82]. 

CUDA approach. The graphics processing unit (GPU) is a highly parallel, multi-
threaded, and multi-core processor with enormous processing power. Its low cost and 
high bandwidth floating point operations and memory access bandwidth are attracting 
more and more high performance computing researchers [75]. In addition, compared to 
cluster systems, which consist of several processors, computing on a GPU is inexpensive 
and requires low power consumption with equivalent performance. In many disciplines 
of science and technology, users were able to increase productivity by several orders of 
magnitude using graphics processors [45,46]. The 2007, with the appearance of the 
CUDA programming language, programming GPUs on NVIDIA graphics cards became 
significantly simpler because its syntax is similar to C[62]. 

It is designed so that its constructions allow a natural expression of concurrency at 
the data level. A CUDA program consists of two parts: a sequential program running on 
the CPU, and a parallel part running on the GPU [46,64]. The parallel part is called the 
kernel. A CUDA program automatically uses more parallelism on GPUs that have more 
processor cores. A C program using CUDA extensions hand out a large number of 
copies of the kernel into available multiprocessors to be performed contemporaneously. 
The CUDA code consists of three computational steps: transferring data to the global 
GPU memory, running the CUDA core, and transferring the results from the GPU to the 
CPU memory. We have designed a CUDA program based on cyclic reduction method, 
whose the full CR function codes are located in [74]. The algorithm for solving the 
problem (1.1) is shown in Algorithm 1. 

 
Here, u, U0, Ux, Uy denote .N,G�bI/�, .N,G� , .N,G��I/�, .N,G��I respectively. 
The CR() function includes 3 device functions, namely, CRM_forward(); cr div(), 

and CRM_backward(), and one host function calc_dim() first we have to calculate the 
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block size according to the size of matrix and step number of forward and backward 
sub-steps for this we use one cycle  

 

 
Here log2(n + 1) - 1 is step number and the variable stepNum is for identify how 

much block size we need therefore the function calc_dim() identified block size after 
that the CRM_forward() function runs log2(n+1)-1 times consequently the system 
reduced one equation. After that we synchronize the device and will call the cr_div() 
function, this function calculates two unknowns. Then we use again one cycle 

 

 
here backward substitution runs log2(n + 1) - 2 times because first backward 

substitution sub-step calculated by calc dim() function thus we calculate d x array after 
that we will copy calculated data dx from device to host using cudaMemcpy(y, d_x; 
sizeof(double) *n, cudaMemcpyDeviceToHost) 

OpenMP+CUDA approach. OpenMP (Open Multi-Processing) was introduced 
to provide the means to implement shared memory concurrency in FORTRAN and C/C 
++ programs. In particular, OpenMP defines a set of environment variables, compiler 
directives and library procedures that will be used for parallelization with shared 
memory. OpenMP was specifically designed to use certain characteristics of shared 
memory architectures, such as the ability to directly access memory through-out a 
system with low latency and very fast shared memory locking [72]. We can easily to 
parallelize loops by using MPI thread libraries and involve the OpenMP compilers. In 
this way, the threads can obtain new tasks, the unprocessed loop iterations, directly from 
local shared memory. The basic idea behind OpenMP is data-shared parallel execution. 
It consists of a set of compiler directives, callable runtime library routines and 
environment variables that extend FORTRAN, C, and C++ programs. 

The unit of workers in OpenMP threads. It works well, when accessing shared 
data costs you nothing. Every thread can access a variable in a shared cache or RAM. In 
this paper, we will use OpenMP to solve the initial condition of the problem. Because 
when solving the initial condition we use 2 cycles and we calculate one matrix for this, 
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OpenMP parallel computing model is very easy to implement parallelism, and it has low 
latency, high bandwidth. 

Hybrid approach. 
We use MPI technology to calculate the elements of the tridiagonal matrix system, 

i.e mN;  °N;  ¯N; +N   because these values can be calculated independently, so we can 
successfully apply MPI technology here. Listing code 1 shows the program code. 

    
These parallel technologies, CODA, OpenMP and MPI can be combined to form a 

multilayered hybrid structure, the premise is that the system has several CPU cores and 
at least one graphics processor. Under this hybrid structure (Figure 2.12), we can make 
better use of the advantages of another programming model. 
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Figure 2.12 Flowchart hybrid approach 

 
2.4.2 Experimental results 
In this section we show the results obtained on a desktop computer with 

configuration 4352 cores GeForce RTX 2080 TI, NVIDIA GPU together with a CPU 
Intel Core(TM) i7-9800X, 3.80 GHz, RAM 64Gb. Simulation parameters are configured 
as follows. Mesh size is uniform in both directions with ∆# =  ∆$ =  0,01, coefficients ¯ =  1 and numerical time step ∆'  is 0.01, and simulation time is T=1.0, therefore the 
total numerical time step is 50. 

Using the implicit subscheme (1.7), the cyclic reduction [61] method is performed 

in the # direction, with the result that we get the grid function .N,G��I/� . In the second 
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fractional time step, using the subscheme (1.8), the Cyclic reduction method is 
performed in the direction of the $ axis, with the result that we get the grid function k. 
The Cyclic reduction method has the order ¢(� + ℎ�), i.e. the first order in time and the 
second in # and $ variables. 

To present more realistic data we tested four cases with large domain sizes of 1024 × 1024, 2048 × 2048, 4096 × 4096, and  8192 × 8192. 
In Table 2.2 we report the execution times in seconds for serial (CPU time), 

CUDA (GPU time), GPU+OpenMP, and CUDA+OpenMP+MPI implementation of 
cyclic reduction method to the problem (2.36) - (2.41). 

Table 2.2  Execution Time (Seconds) 
N (mesh 
size) 

CPU GPU GPU/Open
MP 

GPU/OpenMP/MPI 
 

2 CPU core 4 CPU 
core 

8 CPU 
core 

1024× 1024 48.13 24.104 24.151 24.432 23.232 22.61 
2048× 2048 189.677 45.033 45.01 35.133 33.571 30.261 
4096× 4096 755.614 122.24 59.996 58.797 54.223 51.413 
8192× 8192 3272.305 435.854 239.556 173.45 168.876 159.50 

 
In this section, we proposed the numerical solution of a 2 acoustic wave equation 

based on an implicit finite difference scheme using the cyclic reduction method. And we 
have constructed a heterogeneous hybrid programming environment for a single PC by 
combining the message passing interface MPI, OpenMP, and CUDA programming. 
Also implemented parallelization of the cyclic reduction method on the graphic 
processing unit. And we showed how we accelerated the cyclic reduction method on the 
NVIDIA GPU. From the test results of table 1 it can be seen that the acceleration 
method proposed by us gives a good result. Our hybrid CUDA/OpenMP/CPU 
implementation obtained 10 -15% faster than CUDA implementation. 

In future work, we plan to improve and adapt our hybrid approach for GPU 
clusters and test on a GPU cluster. 
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2.5 Conclusion 

 

     In the second chapter, we considered parallel numerical implementation hyperbolic 
type equations with singular coefficients. Firstly, we presented MPI implementation of 
2D wave equation with a distributional coefficient then CUDA implementation of 2D 
tsunami wave equation and related computational results. 
     And, we presented a hybrid implementation of acoustic wave equation then we 
compared the results from the different implementations. 
     In a hybrid implementation, the joint use of Open MP, CUDA and MPI technologies 
to solve one problem, the result of the calculations showed that this implementation 
gives very good results. 
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3 SOFTWARE COMPLEX FOR THE INVESTIGATION OF THE WAVE 

PROPAGATION IN 1D AND 2D WAVE EQUATION WITH SINGULAR 

COEFFICIENTS 
 

3.1 Overview  

 
In this chapter, we propose a software complex for numerical simulation of wave 

equation with singular coefficients therein the numerical method based on an implicit 
finite difference scheme which is unconditional stable. The application is written in 
Python, a modern object-oriented programming language, and it may run on all 
platforms. It is simple to use, the data is processed quickly and the results being 
presented in a plot and animation could save on disk. Currently, a lot of software is 
being developed for the numerical solution of wave equations, in particular, software 
that simulates tsunami waves, software that describes the pure wave equation, software 
that describes elastic waves, and more.  

Oscillations and waves are extremely important phenomena in science. In nature, 
everywhere we can find oscillations and accurate estimation of wave propagation 
through, from the shaking of atoms to the large tsunami phenomena, is an important 
issue in science. Numerical simulation of wave propagation is fundamental in many 
scientific and engineering applications. An actual task today is the study of wave 
propagation in a discontinuous medium. 

Wave equations are partial differential equations which describe the propagation 
of various types of waves, such as acoustic, elastic and electromagnetic waves[76]. 
Many mathematical studies have been done on the wave equation of the singular 
coefficient [p4,6,7,18,8,33,32,43]. 

The numerical solution of the wave equation began a long time ago and is 
developing to this day, there is a large amount of work devoted to numerical methods 
developed for the study of wave processes in recent decades. It includes a finite-
difference method [25], a finite-volume method [26], the finite-element method [78], a 
spectral-element method [79] a two-level compact ADI method [29] , the implicit Finite 
Difference Time Domain Methods [21], a boundary [integral] element method [27], and 
spectral methods [36]. Most models have been developed for technical applications. 

In the last decade, many numerical modeling software have been developed, most 
of them are designed to model hydrodynamic processes, chemical reactions, and tsunami 
wave propagation. 

In this chapter, we describe a software complex for numerical simulation of the 
wave equation with singular coefficients. It is based on highly accurate numerical 
methods on Cartesian grids. The computational domain is approximated with a Cartesian 
grid where high order fully implicit finite differences schemes are easily implemented 
and very efficient and part of program code are given [84]. 
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3.2 Mathematical model 

  
We describe the one-dimensional and two-dimensional wave equations with time-

varying coefficients that characterize the propagation of waves in a continuous medium. 
These equations are very important in the fields of engineering and physics, 
mathematics, and many scientists are working on these equations. 

1D model  

 
	�)(�,�)��� − m(') ��)(�,�)��� + °(') �)(�,�)�� + ¯(') �)(�,�)�� + T(').(', #) =+(', #),   (', #) ∈ (0, K) × � (3.1) 

 The initial values are given by the initial value condition  

 .(0, #) = �(#),   �)�� (0, #) = :(#),   (#) ∈ �, (3.2) 

 where � = (0, @). Since the domain � is bounded we require some conditions on 
its boundary, for example, the Dirichlet boundary condition  

 .(', #)|�ô = �(', #),   ' ∈ >0, K?. (3.3) 
 where a(t),b(t),c(t),d(t) are � − like singularity function. 
2D model  

 
	�)(�,�,�)��� − m(')(��)(�,�,�)��� + ��)(�,�,�)��� ) + °(') �)(�,�,�)�� + ¯(')(�)(�,�,�)�� +�)(�,�,�)�� )  + T(').(', #, $) = +(', #, $),   (', #, $) ∈ (0, K) × �  (3.4) 

 where � = (0, @) × (0, ×) for some fixed @, × > 0. The initial values are given by 
the initial value condition  

 .(0, #, $) = �(#, $),   �)�� (0, #, $) = :(#, $),   (#, $) ∈ �, (3.5) 

 where � = (0, @) × (0, ×). Since the domain � is bounded we require some 
conditions on its boundary, for example, the Dirichlet boundary condition  

 .(', #, $)|�ô = �(', #, $),   ' ∈ >0, K?. (3.6) 
 
2.3.1 Finite difference scheme and calculation algorithm 
 In this section, we consider the 2D equation, therein include 1D equation. 
We introduce space-time grids with steps �, ℎ1, ℎ2 in the variables ', #, $, 

respectively, that are  ���,���  = {('�, #N , $G): '� = s�; #N = SℎI; $G = iℎ�,   (s, S, i) ∈ �}, ���,���  ={('� , #N , $G): '� = s�; #N = SℎI; $G = iℎ�,   (s, S, i) ∈ �},  (3.7) 
 where  
 �: = {(s, S, i) ∈ ���: 0 < s ≤ �; 0 < S <  I; 0 < i <  �}, 
 
 �: = {(s, S, i) ∈ ���: 0 ≤ s ≤ �; 0 ≤ S ≤  I; 0 ≤ i ≤  �}, 
and  
 @ = ℎI I, × = ℎ� �, K = ��. 
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One calculates an approximate solution from discrete points in the time-spatial 
grid ���,��� . On this grid we approximate the problem (3.4)–(3.6) using the finite 
difference method. For simplicity, we put  : =  I =  � and denote ℎ: = ℎI = ℎ�. 
Consider the Crank-Nicolson scheme for the problem (3.4)–(3.6). First we transform the 
partial differential equation (3.4) into the implicit finite-difference equation  

 .S,is+1−2.S,is +.S,is−1�2 − ms4ℎ2 ((.S+1,is+1 − 2.S,is+1 + .S−1,is+1 + .S+1,is−1 − 2.S,is−1 + .S−1,is−1 )   +
(.S,i+1s+1 − 2.S,is+1 + .S,i−1s+1 + .S,i+1s−1 − 2.S,is−1 + .S,i−1s−1 ))   + °s(.S,is+1−.S,is� ) + ¯s(.S+1,is −.S,isℎ ) +Ts.S,is = +S,is   (3.8) 

 for (s, S, i) ∈ ���,��� , where m�: = m(s�), °�: = °(s�), ¯�: = ¯(s�), T�: =T(s�),   +N,G� : = +(s�, Sℎ, iℎ) with initial conditions  
 .N,GM = �N,G ,   .N,GI − .N,GM = ��N,G ,  (3.9) 
 for (S, i) ∈ 0,  × 0,  , and with boundary conditions  

 .M,G� = 0,   .�,G� = 0,   .N,M� = 0,   .N,�� = 0,     (3.10) 
 for (i, s) ∈ 0,  × 0, � and (S, s) ∈ 0,  × 0, �, respectively. 
It is well-known, that the implicit scheme (3.8)–(3.10) is unconditionally stable 

and it has accuracy order ¢(� + |ℎ|�), see, for example [16]. We solve the difference 
equation (3.8) by the alternating direction implicit (ADI)method, namely, dividing it into 
two sub problems [29] 

For simulation we use initial condition:  w(#, $, 0) = á(# − 0.4)(# − 0.6) + ($ − 0.4)($ − 0.6), if0.4 < x < 0.6and0.4 < y < 0.6;0, else  w�(#, $, 0) = 0 and dirichlet boundary conditions. 
 
3.3 Software package description 

  
The software we offer is an open-source and high-precision calculation tool, 

where the algorithm is based on an implicit difference scheme and is an absolute stable. 
The calculations include the following steps: 

1. Selection of coefficients of variables depending on the given equation 
2. Setting calculation parameters, ie setting area size, spatial and temporal steps, 

and other parameters 
3. Carrying out calculations, viewing the solution of the problem in the form of 

animation 
4. Compare the obtained results and save it in files, if necessary 
The software was developed in Python 3.8 using the matplotlib libraries 

(graphing), tkinter (creating a graphical interface) 
 
 



76 

 

       Table  3.1Software structure 
 module  function  Q&§_TSl_|Qtí§R. Þ$  one-dimensional equation solver  'îQ_TSl_|Qtí§R. Þ$  two-dimensional equation solver  �.S. Þ$  Building a graphical user interface  ÞtQ'|. Þ$  Graphing the results of the equation  lmS&. Þ$ The program launch module, which calls the 

remaining modules and provides data exchange between 
them 

 
3.3.1  Graphical user interface 
 Figure 3.1 shows the graphical interface of the software package. In the left half - 

the control panel consists of the following blocks: “choose singular coefficient” - choose 
one of the coefficients a (t), b (t), c (t), d (t) depending on the equation; “Set domain 
size” - Set out of the computational area, the calculation time and steps of the calculation 
grids; “Set parameters” - assign the location of the initial wave and other additional 
parameters; “Set exponential parameters” - assign the degree of the selected singular 
coefficient; “Status screen” - a window showing the calculation process; "Control Panel" 
- start and stop the computational experiment. 

In the right half is an equation and a window for graphically displaying the 
calculation results.  

  
Figure  3.1 Graphical user interface for 1D case 
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Figure  3.2 Graphical user interface for 2D case 

   
3.4  Calculation example 

  
For the computational experiment, the following parameters were selected: for the 

one-dimensional case, the domain length Lx = 20.0, the grid step h = 0.5, the simulation 
time Lt = 2.0, the time step tau = 0.05, the locations with the initial wave center = 6.0, 
the degree for all of the coefficient is 1.5; for the two-dimensional case, the domain 
length is Lx = Ly = 100.0, the grid step is h = 0.5, the simulation time is Lt = 5.0, the 
time step is tau = 0.05, the initial wave position is center = 5.0, and the degree for all of 
the coefficient is 1.5.  
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Figure  3.3 1D simulation results regarding coefficients a(t),b(t),c(t),d(t) 
 
   Figure 3.3 shows the results after a separate choice of the coefficients a (t), b (t), 

c (t), d (t). In all 4 cases, the main calculation parameters are the same, and from these 
figures it is clear that when the coefficient a(t) is selected, the wave does not change, 
when the coefficient b(t) is selected, half the wave returns, when the coefficient c(t) is 
selected, the wave returns completely, when the coefficient d (t) is selected, a very 
interesting situation arises when the wave reaches a critical time, the wave height does 
not change and the lower part descends, the descending parts of the wave come back. 

       Developed software for conducting a computational experiment provides 
calculation and modeling for studying the propagation of waves in which the 
computation algorithm based on an absolute stable fully implicit finite difference 
scheme. The computation module provides for the possibility of saving the whole 
simulation in the format animation and in pictures. The obtained results might be useful 
for studying wave propagation through a discontinuous medium. 
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CONCLUSION 

 

In this thesis, we have considered the numerical solution of hyperbolic type 
equations with singular coefficients. As a result of comparing explicit and implicit finite 
difference schemes, we have chosen an implicit finite difference scheme that is 
absolutely stable. Sequential algorithm for numerical solution, implemented by the 
Thomas method. 

We used an implicit difference scheme to numerically solve the tsunami and 
acoustic wave equations. We have theoretically proved that there exists a very weak 
solution of the tsunami equation with a singular coefficient. When solving the Tsunami 
equation, we investigated its coefficient under singular and non-singular cases. We used 
this tsunami model to simulate a tsunami in the Caspian Sea and made different 
predictions depending on the height of the initial wave. 

Due to the fact that the computation time for the sequential algorithm was very 
long in the long-term modeling of a large area, therefore, we began to parallelize the 
sequential algorithm. 

When parallelizing the Thomas method in the MPI environment, we used the 
parallel method proposed by Yanenko. We have developed a parallel algorithm using 
the Yanenko method for the numerical solution of a two-dimensional wave equation 
with a singular coefficient in the MPI environment, the results are tested on a personal 
computer and on a computing cluster. The test results show that the method of Yanenko 
is much more effective on individual nodes than several nodes. This means that this 
method is more effective on personal computers than a cluster because it takes a lot of 
time to exchange data between nodes. 

We have developed a parallel algorithm for solving a two-dimensional tsunami 
equation using CUDA technology. The parallel algorithm is based on the cyclic 
reduction method. The test results showed that this parallel algorithm gives good results. 

We have developed a parallel hybrid algorithm for the numerical solution of a 
two-dimensional acoustic wave equation for a single PC by combining the message 
passing interface MPI, Open MP, and CUDA programming. Our hybrid CUDA/Open 
MP/CPU implementation obtained 10 -15% faster than CUDA implementation. 

For the convenience of studying one-dimensional and two-dimensional wave 
equation with singular coefficients, we have developed open-source cross-platform 
software. The computation algorithm of the software based on an absolute stable fully 
implicit finite difference scheme. This software gives the possibility to view the 
animation of the equation and save the simulation results of each time step as a picture. 
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APPENDIX A 

Program code of Yaneko Method  
void YanekoMethod_mpi(double *a, double *b, double *c, double *f, double *y, 

int n) 
{ 
int size, rank, i1, i2; 
MPI_Comm_size(MPI_COMM_WORLD, &size); 
MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
int i, j, k, kk, m = n / size; 
cout << " m: " << m << endl; 
double  *ai = new double[n + 1], *bi = new double[n + 1], *ci = new double[n + 

1], *fi = new double[n + 1]; 
double  *alfa = new double[n + 1], *betta_u = new double[n + 1], *betta_w = new 

double[n + 1], *betta_v = new double[n + 1]; 
double *u = new double[n + 1], *v = new double[n + 1], *w = new double[n + 1], 

*f1 = new double[n + 1], *f2 = new double[n + 1], *f3 = new double[n + 1]; 
double *a_u = new double[m], *a_v = new double[m], *a_w = new double[m], 

*y_rez = new double[m]; 
 double *alfa2 = new double[size], *betta2 = new double[size]; 
double *A = new double[size + 1], *B = new double[size + 1], *C = new 

double[size + 1], *D = new double[size + 1], *Z = new double[size + 1]; 
if (rank == 0) 
{ 
for (i = 0;i < n;i++) 
{ 
ai[i] = a[i]; 
ci[i] = c[i]; 
bi[i] = b[i]; 
fi[i] = f[i]; 
f3[i] = f[i]; 
} 
for (i = 0;i <= n;i++) 
{ 
 f1[i] = 0; 
 f2[i] = 0; 
} 
 f3[n] = f3[n - 1]; 
 fi[n] = fi[n - 1]; 
 ci[0] = 0; 
 ci[n] = 0; 
 ai[0] = 0; 
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 ai[n] = 0; 
 bi[0] = 1; 
 bi[n] = 1; 
 } //end rank==0 
 
i1 = (n*rank) / size; 
i2 = (n*(rank + 1)) / size; 
 MPI_Bcast(ai, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(bi, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(ci, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(f1, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(f2, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(f3, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(fi, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 f1[i1] = 1; 
 f2[i2] = 1; 
 f3[i1] = 0; 
 f3[i2] = 0; 
 b[i1] = 1; 
 c[i1] = 0; 
 alfa[i1] = -c[i1] / b[i1]; 
 betta_u[i1] = f1[i1] / b[i1]; 
 betta_v[i1] = f2[i1] / b[i1]; 
 betta_w[i1] = f3[i1] / b[i1]; 
for (i = i1 + 1;i <= i2;i++) 
{ 
 
alfa[i] = -c[i] / (b[i] + a[i] * alfa[i - 1]); 
betta_u[i] = (-a[i] * betta_u[i - 1] + f1[i]) / (b[i] + a[i] * alfa[i - 1]); 
betta_v[i] = (-a[i] * betta_v[i - 1] + f2[i]) / (b[i] + a[i] * alfa[i - 1]); 
betta_w[i] = (-a[i] * betta_w[i - 1] + f3[i]) / (b[i] + a[i] * alfa[i - 1]); 
} 
 
 u[i1] = 1; v[i1] = 0; w[i1] = 0; 
 u[i2] = 0; v[i2] = 1; w[i2] = 0; 
for (i = i2 - 1;i>i1;i--) 
{ 
u[i] = (alfa[i] * u[i + 1] + betta_u[i]); 
v[i] = (alfa[i] * v[i + 1] + betta_v[i]); 
w[i] = (alfa[i] * w[i + 1] + betta_w[i]); 
} 
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kk = 0; 
for (i = i1;i <= i2;i++) 
{ 
a_u[kk] = u[i]; 
a_v[kk] = v[i]; 
a_w[kk] = w[i]; 
kk++; 
} 
MPI_Gather(a_u, m, MPI_DOUBLE, u, m, MPI_DOUBLE, 0, 

MPI_COMM_WORLD); 
MPI_Gather(a_v, m, MPI_DOUBLE, v, m, MPI_DOUBLE, 0, 

MPI_COMM_WORLD); 
MPI_Gather(a_w, m, MPI_DOUBLE, w, m, MPI_DOUBLE, 0, 

MPI_COMM_WORLD); 
MPI_Bcast(u, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
MPI_Bcast(v, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
MPI_Bcast(w, n + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
if (rank == 0) 
{ 
B[0] = b[0] + c[0] * u[1]; 
C[0] = c[0] * v[1]; 
D[0] = f[0] - c[0] * w[1]; 
A[size] = a[size*m] * u[size*m - 1]; 

         B[size] = b[size*m] + a[size*m] * v[size*m - 1]; 
D[size] = f[size*m] - a[size*m] * w[size*m - 1]; 
for (j = 1;j<size;j++) 
{ 
A[j] = a[j*m] * u[j*m - 1]; 
B[j] = a[j*m] * v[j*m - 1] + b[j*m] + c[j*m] * u[j*m + 1]; 
C[j] = c[j*m] * v[j*m + 1]; 
D[j] = f[j*m] - a[j*m] * w[j*m - 1] - c[j*m] * w[j*m + 1]; 
} 
alfa2[0] = -C[0] / B[0]; 
betta2[0] = D[0] / B[0]; 
for (i = 1;i<size;i++) 
{ 
alfa2[i] = -C[i] / (B[i] + A[i] * alfa2[i - 1]); 
betta2[i] = (-A[i] * betta2[i - 1] + D[i]) / (B[i] + A[i] * alfa2[i - 1]); 
} 

Z[size] = (D[size] - A[size] * betta2[size - 1]) / (B[size] + A[size] * alfa2[size - 1]); 
for (j = size - 1;j >= 0;j--) 
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{ 
Z[j] = (alfa2[j] * Z[j + 1] + betta2[j]); 
} 
} 
 MPI_Bcast(Z, size + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
y[i1] = Z[rank]; 
y[i2] = Z[rank + 1]; 
for (i = i1 + 1;i<i2;i++) 
{ 
y[i] = Z[rank] * u[i] + Z[rank + 1] * v[i] + w[i]; 
} 
kk = 0; 
for (i = i1;i<i2;i++) 
{ 
y_rez[kk] = y[i]; 
kk++; 
} 
MPI_Gather(y_rez, m, MPI_DOUBLE, y, m, MPI_DOUBLE, 0, 

MPI_COMM_WORLD); 
if (rank == 0) 
{ 
cout << "\n Yanenko result  : \n"; 
for (i=0;i<n;i++) 
cout<<y[i] << " "; 
} 
delete[] alfa, betta_u, betta_w, betta_v; 
delete[] u, v, w, f1, f2, f3; 
delete[] a_u, a_v, a_w, y_rez; 
delete[] alfa2, betta2; 
delete[] A, B, C, D, Z; 
}  //End ThomasMethod 
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Appendix B 

Program code of software complex 

 
class OOP(): 
    def __init__(self): 
        self.win = tk.Tk() 
        self.win.title("wave simulator") 
        self.win.geometry('1024x600') 
        self.createWidgets() 
    def createWidgets(self): 
        tabControl = ttk.Notebook(self.win) 
        tab1 = ttk.Frame(tabControl) 
        tab2 = ttk.Frame(tabControl) 
        tabControl.add(tab1, text='1D case') 
        tabControl.add(tab2, text='2D case') 
        tabControl.pack(expand=1, fill="both") 
        self.monty0 = ttk.LabelFrame(tab1, text='Choose singular coefficents') 
        self.monty0.grid(row=0, column=0,  columnspan=6, padx=4,  pady=4) 
        self.var1 = tk.IntVar() 
        self.var2 = tk.IntVar() 
        self.var3 = tk.IntVar() 
        self.var4 = tk.IntVar() 
        ttk.Checkbutton(self.monty0, 

text="a(t)",variable=self.var1,width=10,offvalue=0).grid(row=0, column=0) 
        ttk.Checkbutton(self.monty0, 

text="b(t)",variable=self.var2,width=10).grid(row=0, column=1) 
        ttk.Checkbutton(self.monty0, 

text="c(t)",variable=self.var3,width=10).grid(row=0, column=2) 
        ttk.Checkbutton(self.monty0, 

text="d(t)",variable=self.var4,width=10).grid(row=0, column=3) 
        self.monty1 = ttk.LabelFrame(tab1, text='Set domain size') 
        self.monty1.grid(row=1, rowspan=2, column=0,  columnspan=6, padx=4,  

pady=4) 
        ttk.Label(self.monty1, text="Domain legth, Lx=").grid(row=1, column=0,  

pady=4) 
        self.lx_f=ttk.Entry(self.monty1,width=11) 
        self.lx_f.grid(row=1, column=1) 
        self.lx_f.insert(10, 20.0) 
        ttk.Label(self.monty1, text="Time legth, Lt=").grid(row=1, column=2,  

pady=4) 
        self.lt_f=ttk.Entry(self.monty1,width=11) 
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        self.lt_f.grid(row=1, column=3) 
        self.lt_f.insert(10, 2.0) 
         
        ttk.Label(self.monty1, text="Domain step, h=").grid(row=2, column=0,  

pady=4) 
        self.h_f=ttk.Entry(self.monty1,width=11) 
        self.h_f.grid(row=2, column=1) 
        self.h_f.insert(10, 0.05) 
        ttk.Label(self.monty1, text="Time step, tau=").grid(row=2, column=2,  

pady=4) 
        self.t_f=ttk.Entry(self.monty1,width=11) 
        self.t_f.grid(row=2, column=3) 
        self.t_f.insert(10, 0.025) 
        self.monty2 = ttk.LabelFrame(tab1, text='Set parametrs') 
        self.monty2.grid( row=3, column=0, columnspan=6, padx=4,  pady=4) 
        ttk.Label(self.monty2, text="Eps").grid(row=3, column=0,  pady=4) 
        self.ep_f=ttk.Entry(self.monty2,width=10) 
        self.ep_f.grid(row=3, column=1) 
        self.ep_f.insert(10, 0.1) 
        ttk.Label(self.monty2, text="Delta").grid(row=3, column=2,  pady=4) 
        self.d_f=ttk.Entry(self.monty2,width=10) 
        self.d_f.grid(row=3, column=3) 
        self.d_f.insert(10, 1.0) 
        ttk.Label(self.monty2, text="Center").grid(row=3, column=4,  

pady=4,padx=4) 
        self.c_f=ttk.Entry(self.monty2,width=10) 
        self.c_f.grid(row=3, column=5) 
        self.c_f.insert(10, 5) 
        self.monty3 = ttk.LabelFrame(tab1, text='Set exponential parametrs') 
        self.monty3.grid(row=4, column=0, columnspan=6, padx=4,  pady=4) 
        ttk.Label(self.monty3, text="Sb").grid(row=4, column=0,  pady=4) 
        self.Sb_f=ttk.Entry(self.monty3,width=11) 
        self.Sb_f.grid(row=4, column=1,padx=8) 
        self.Sb_f.insert(10, 1.5) 
        ttk.Label(self.monty3, text="Sc").grid(row=4, column=2,  pady=4) 
        self.Sc_f=ttk.Entry(self.monty3,width=11) 
        self.Sc_f.grid(row=4, column=3,padx=8) 
        self.Sc_f.insert(10, 1.5) 
        ttk.Label(self.monty3, text="Sd").grid(row=4, column=4,  pady=4,padx=8) 
        self.Sd_f=ttk.Entry(self.monty3,width=11) 
        self.Sd_f.grid(row=4, column=5) 
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        self.Sd_f.insert(10, 1.5) 
        self.monty4 = ttk.LabelFrame(tab1, text='Status screen') 
        self.monty4.grid(row=5, column=0,  columnspan=6, padx=4,  pady=4) 
        scrollb = ttk.Scrollbar(self.monty4) 
        scrollb.grid(row=5, column=0, columnspan=4, pady=4) 
        self.listbox = tk.Listbox(self.monty4,width=50) 
        self.listbox.grid(row=5, column=0, columnspan=4, pady=2, padx=8) 
        self.listbox.config(yscrollcommand=scrollb.set) 
        scrollb.config(command=self.listbox.yview) 
        self.monty5 = ttk.LabelFrame(tab1, text='Control bar') 
        self.monty5.grid(row=6, column=0,  columnspan=6, padx=4,  pady=4) 
        ttk.Button(self.monty5,text="Start", 

width=25,command=self.esepte).grid(row=6, column=0, columnspan=3) 
        ttk.Button(self.monty5, text='Exit', width=25, command=quit).grid(row=6, 

column=3,columnspan=3) 
       self.monty6 = ttk.LabelFrame(tab1, text='Equation',width=512) 
        self.monty6.grid(row=0,column=6, columnspan=3, pady=4)  
        load = Image.open("wave1d.jpg") 
        render = ImageTk.PhotoImage(load) 
        img = ttk.Label(self.monty6, image=render) 
        img.image = render 
        img.grid(row=0, column=6,columnspan=3,rowspan=2) 
        self.monty7 = ttk.LabelFrame(tab1, text='Result windows') 
        self.monty7.grid(row=1,column=6, columnspan=2, padx=4,  pady=4, 

rowspan=5) 
        self.c = tk.Canvas(self.monty7, width = 600, height = 400, bg = 'white') 
        self.c.grid(row=1, column=6, columnspan=2, rowspan=5) 
        self.monty8 = ttk.LabelFrame(tab1, text='  ') 
        self.monty8.grid(row=6,  column=6,  padx=4,  pady=4) 
        ttk.Button(self.monty8,text="Save graphic", 

width=25,command=self.esepte).grid(row=6, column=6) 
        ttk.Button(self.monty8, text='Save animation', width=25, 

command=quit).grid(row=6, column=7) 
        #_______2D______________________________ 
        self.tab2_0 = ttk.LabelFrame(tab2, text='Choose singular coefficents') 
        self.tab2_0.grid(row=0, column=0,  columnspan=6, padx=4,  pady=4) 
        self.va1 = tk.IntVar() 
        self.va2 = tk.IntVar() 
        self.va3 = tk.IntVar() 
        self.va4 = tk.IntVar() 
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        ttk.Checkbutton(self.tab2_0, 
text="a(t)",variable=self.va1,width=10,offvalue=0).grid(row=0, column=0) 

        ttk.Checkbutton(self.tab2_0, 
text="b(t)",variable=self.va2,width=10).grid(row=0, column=1) 

        ttk.Checkbutton(self.tab2_0, 
text="c(t)",variable=self.va3,width=10).grid(row=0, column=2) 

        ttk.Checkbutton(self.tab2_0, 
text="d(t)",variable=self.va4,width=10).grid(row=0, column=3) 

        self.tab2_1 = ttk.LabelFrame(tab2, text='Set domain size') 
        self.tab2_1.grid(row=1, rowspan=2, column=0,  columnspan=6, padx=4,  

pady=4) 
        ttk.Label(self.tab2_1, text="Domain legth, Lx=Ly=").grid(row=1, column=0,  

pady=4) 
        self.lx_f=ttk.Entry(self.tab2_1,width=10) 
        self.lx_f.grid(row=1, column=1) 
        self.lx_f.insert(10, 100.0) 
        ttk.Label(self.tab2_1, text="Time legth, Lt=").grid(row=1, column=2,  

pady=4) 
        self.lt_f=ttk.Entry(self.tab2_1,width=10) 
        self.lt_f.grid(row=1, column=3) 
        self.lt_f.insert(10, 5.0) 
        ttk.Label(self.tab2_1, text="Domain step, h=").grid(row=2, column=0,  

pady=4) 
        self.h_f=ttk.Entry(self.tab2_1,width=10) 
        self.h_f.grid(row=2, column=1) 
        self.h_f.insert(10, 0.5) 
        ttk.Label(self.tab2_1, text="Time step, tau=").grid(row=2, column=2,  

pady=4) 
        self.t_f=ttk.Entry(self.tab2_1,width=10) 
        self.t_f.grid(row=2, column=3) 
        self.t_f.insert(10, 0.5) 
        self.tab2_2 = ttk.LabelFrame(tab2, text='Set parametrs') 
        self.tab2_2.grid( row=3, column=0, columnspan=6, padx=4,  pady=4) 
        ttk.Label(self.tab2_2, text="Eps").grid(row=3, column=0,  pady=4) 
        self.ep_f=ttk.Entry(self.tab2_2,width=10) 
        self.ep_f.grid(row=3, column=1) 
        self.ep_f.insert(10, 0.1) 
        ttk.Label(self.tab2_2, text="Delta").grid(row=3, column=2,  pady=4) 
        self.d_f=ttk.Entry(self.tab2_2,width=10) 
        self.d_f.grid(row=3, column=3) 
        self.d_f.insert(10, 1.0) 



94 

 

        ttk.Label(self.tab2_2, text="Center").grid(row=3, column=4,  
pady=4,padx=4) 

        self.c_f=ttk.Entry(self.tab2_2,width=10) 
        self.c_f.grid(row=3, column=5) 
        self.c_f.insert(10, 5) 
        self.tab2_3 = ttk.LabelFrame(tab2, text='Set exponential parametrs') 
        self.tab2_3.grid(row=4, column=0, columnspan=6, padx=4,  pady=4) 
        ttk.Label(self.tab2_3, text="Sb").grid(row=4, column=0,  pady=4) 
        self.Sb_f=ttk.Entry(self.tab2_3,width=11) 
        self.Sb_f.grid(row=4, column=1,padx=8) 
        self.Sb_f.insert(10, 1.5) 
        ttk.Label(self.tab2_3, text="Sc").grid(row=4, column=2,  pady=4) 
        self.Sc_f=ttk.Entry(self.tab2_3,width=11) 
        self.Sc_f.grid(row=4, column=3,padx=8) 
        self.Sc_f.insert(10, 1.5) 
         ttk.Label(self.tab2_3, text="Sd").grid(row=4, column=4,  pady=4,padx=8) 
        self.Sd_f=ttk.Entry(self.tab2_3,width=11) 
        self.Sd_f.grid(row=4, column=5) 
        self.Sd_f.insert(10, 1.5) 
        self.tab2_4 = ttk.LabelFrame(tab2, text='Status screen') 
        self.tab2_4.grid(row=5, column=0,  columnspan=6, padx=4,  pady=4) 
        self.listbox2 = tk.Listbox(self.tab2_4,width=50) 
        self.listbox2.grid(row=5, column=0, columnspan=4, pady=2, padx=8) 
        self.listbox2.config(yscrollcommand=scrollb.set) 
        self.tab2_5 = ttk.LabelFrame(tab2, text='Control bar') 
        self.tab2_5.grid(row=6, column=0,  columnspan=6, padx=4,  pady=4) 
        ttk.Button(self.tab2_5,text="Start", 

width=25,command=self.esepte2).grid(row=6, column=0, columnspan=3) 
        ttk.Button(self.tab2_5, text='Exit', width=25, command=quit).grid(row=6, 

column=3,columnspan=3) 
        self.tab2_6 = ttk.LabelFrame(tab2, text='Equation',width=512) 
        self.tab2_6.grid(row=0,column=6, columnspan=3, pady=4)  
        load = Image.open("wave2d.jpg") 
        render = ImageTk.PhotoImage(load) 
        img = ttk.Label(self.tab2_6, image=render) 
        img.image = render 
        img.grid(row=0, column=6,columnspan=3,rowspan=2) 
        self.tab2_7 = ttk.LabelFrame(tab2, text='Result windows') 
        self.tab2_7.grid(row=1,column=6, columnspan=2, padx=4,  pady=4, 

rowspan=5) 
        self.c = tk.Canvas(self.tab2_7, width = 600, height = 400, bg = 'white') 
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        self.c.grid(row=1, column=6, columnspan=2, rowspan=5) 
        self.tab2_8 = ttk.LabelFrame(tab2, text='  ') 
        self.tab2_8.grid(row=6,  column=6,  padx=4,  pady=4) 
        ttk.Button(self.tab2_8,text="Save graphic", 

width=25,command=self.esepte2).grid(row=6, column=6) 
        ttk.Button(self.tab2_8, text='Save animation', width=25, 

command=quit).grid(row=6, column=7) 
         
 
 
 
 
 
 
 
 
 
 
 
 
 


